Regionalization of the SWAT+ model for projecting climate change impacts on sediment yield: An application in the Nile basin

被引:13
|
作者
Nkwasa, Albert [1 ]
Chawanda, Celray James [1 ]
van Griensven, Ann [1 ,2 ]
机构
[1] Vrije Univ Brussel VUB, Hydrol & Hydraul Engn Dept, B-1050 Brussels, Belgium
[2] IHE Delft Inst Water Educ, Water Sci & Engn Dept, NL-2611 AX Delft, Netherlands
基金
比利时弗兰德研究基金会; 欧盟地平线“2020”;
关键词
Soil erosion; Sediment yield; SWAT+; Regional modeling; Climate change; Nile basin; PREDICTING SOIL-EROSION; COVER-MANAGEMENT FACTOR; RIVER-BASIN; LAND-USE; SPATIAL-RESOLUTION; SURFACE RUNOFF; STREAM-FLOW; SCALE; WATER; DEM;
D O I
10.1016/j.ejrh.2022.101152
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Study region: Nile basin. Study focus: Several studies have shown a relationship between climate change and changes in sediment yield. However, there are limited modeling applications that study this relationship at regional scales mainly due to data availability and computational cost. This study proposes a methodological framework using the SWAT+ model to predict and project sediment yield at a regional scale in data-scarce regions using global datasets. We implement a framework that (a) incorporates topographic factors from high/medium resolution DEMs (b) incorporates crop phenology data (c) introduces an areal threshold to linearize sediment yield in large model units and (d) apply a hydrological mass balance calibration. We test this methodology in the Nile Basin using a model application with (revised) and without (default) the framework under historical and future climate projections. New hydrological insights for the region: Results show improved sediment yield estimates in the revised model, both in absolute values and spatial distribution when compared to measured and reported estimates. The contemporary long term (1989 - 2019) annual mean sediment yield in the revised model was 1.79 t ha-1 yr(- 1) and projected to increase by 61 % (44 % more than the default estimates) in te future period (2071 - 2100), with the greatest sediment yield increase in the eastern part of the basin. Thus, the proposed framework improves and influences modeled and predicted sediment yield respectively.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Assessment of Future Climate Change Impacts on Water Resources of Upper Sind River Basin, India Using SWAT Model
    Narsimlu, Boini
    Gosain, Ashvin K.
    Chahar, Baghu R.
    WATER RESOURCES MANAGEMENT, 2013, 27 (10) : 3647 - 3662
  • [22] Downscaling climate change of water availability, sediment yield and extreme events: Application to a Mediterranean climate basin
    Zhang, Rong
    Corte-Real, Joao
    Moreira, Madalena
    Kilsby, Chris
    Birkinshaw, Stephen
    Burton, Aidan
    Fowler, Hayley J.
    Forsythe, Nathan
    Nunes, Joao Pedro
    Sampaio, Elsa
    dos Santos, Francisco Lucio
    Mourato, Sandra
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2019, 39 (06) : 2947 - 2963
  • [23] Sediment management modelling in the Blue Nile Basin using SWAT model
    Betrie, G. D.
    Mohamed, Y. A.
    van Griensven, A.
    Srinivasan, R.
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2011, 15 (03) : 807 - 818
  • [24] Modelling potential climate change impacts on sediment yield in the Tsitsa River catchment, South Africa
    Theron, Simone Norah
    Weepener, Harold Louw
    Le Roux, Jacobus Johannes
    Engelbrecht, Christina Johanna
    WATER SA, 2021, 47 (01) : 67 - 75
  • [25] Simulation of Climate Change Impacts on Crop Yield in the Saskatchewan Grain Belt Using an Improved SWAT Model
    Zare, Mohammad
    Azam, Shahid
    Sauchyn, David
    AGRICULTURE-BASEL, 2023, 13 (11):
  • [26] Climate Change Impacts on Runoff in the Fujiang River Basin Based on CMIP6 and SWAT Model
    Wang, Yong
    Xu, Hong-Mei
    Li, Yong-Hua
    Liu, Lyu-Liu
    Hu, Zu-Heng
    Xiao, Chan
    Yang, Tian-Tian
    WATER, 2022, 14 (22)
  • [27] Projecting the impacts of climate change on streamflow in the upper reaches of the Yangtze River basin
    Gao, Danyang
    Chen, Ting
    Yang, Kebi
    Zhou, Jiye
    Ao, Tianqi
    JOURNAL OF WATER AND CLIMATE CHANGE, 2021, 12 (05) : 1724 - 1743
  • [28] Application of the SWAT model to assess climate and land use/cover change impacts on water balance components of the Kabul River Basin, Afghanistan
    Ougahi, Jamal Hassan
    Karim, Shahid
    Mahmood, Syed Amer
    JOURNAL OF WATER AND CLIMATE CHANGE, 2022, 13 (11) : 3977 - 3999
  • [29] Simulated Runoff and Sediment Yield Responses to Land-Use Change Using the SWAT Model in Northeast China
    Zhang, Limin
    Meng, Xianyong
    Wang, Hao
    Yang, Mingxiang
    WATER, 2019, 11 (05)
  • [30] Assessment of Hydrology and Sediment Yield in the Mekong River Basin Using SWAT Model
    Sok, Ty
    Oeurng, Chantha
    Ich, Ilan
    Sauvage, Sabine
    Miguel Sanchez-Perez, Jose
    WATER, 2020, 12 (12) : 1 - 26