Kernel-based parameter estimation of dynamical systems with unknown observation functions

被引:3
作者
Lindenbaum, Ofir [1 ]
Sagiv, Amir [2 ]
Mishne, Gal [3 ]
Talmon, Ronen [4 ]
机构
[1] Yale Univ, Program Appl Math, 51 Prospect St, New Haven, CT 06511 USA
[2] Columbia Univ, Dept Appl Phys & Appl Math, 500 West 120th St, New York, NY 10027 USA
[3] Univ Calif San Diego, Halicioglu Data Sci Inst, 9500 Gilman Dr,MS 0555 SDSC 215E, La Jolla, CA 92093 USA
[4] Technion Israel Inst Technol, Fac Elect Engn, IL-32000 Haifa, Israel
关键词
ALGORITHM; REDUCTION; EIGENMAPS;
D O I
10.1063/5.0044529
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A low-dimensional dynamical system is observed in an experiment as a high-dimensional signal, for example, a video of a chaotic pendulums system. Assuming that we know the dynamical model up to some unknown parameters, can we estimate the underlying system's parameters by measuring its time-evolution only once? The key information for performing this estimation lies in the temporal inter-dependencies between the signal and the model. We propose a kernel-based score to compare these dependencies. Our score generalizes a maximum likelihood estimator for a linear model to a general nonlinear setting in an unknown feature space. We estimate the system's underlying parameters by maximizing the proposed score. We demonstrate the accuracy and efficiency of the method using two chaotic dynamical systems-the double pendulum and the Lorenz '63 model.
引用
收藏
页数:16
相关论文
共 74 条
[1]  
Abramovich F., 2013, STAT THEORY CONCISE, DOI [DOI 10.1201/B14755, 10.1201/b14755]
[2]  
Aggarwal CC, 2001, LECT NOTES COMPUT SC, V1973, P420
[3]  
Aster R. C., 2005, Parameter Estimation and Inverse Problems, V2nd
[4]   Kernel independent component analysis [J].
Bach, FR ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (01) :1-48
[5]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[6]   On learning Hamiltonian systems from data [J].
Bertalan, Tom ;
Dietrich, Felix ;
Mezic, Igor ;
Kevrekidis, Ioannis G. .
CHAOS, 2019, 29 (12)
[7]   Automated reverse engineering of nonlinear dynamical systems [J].
Bongard, Josh ;
Lipson, Hod .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (24) :9943-9948
[8]   Poincare maps for multiscale physics discovery and nonlinear Floquet theory [J].
Bramburger, Jason J. ;
Kutz, J. Nathan .
PHYSICA D-NONLINEAR PHENOMENA, 2020, 408
[9]   Predicting Hematoma Expansion After Primary Intracerebral Hemorrhage [J].
Brouwers, H. Bart ;
Chang, Yuchiao ;
Falcone, Guido J. ;
Cai, Xuemei ;
Ayres, Alison M. ;
Battey, Thomas W. K. ;
Vashkevich, Anastasia ;
McNamara, Kristen A. ;
Valant, Valerie ;
Schwab, Kristin ;
Orzell, Susannah C. ;
Bresette, Linda M. ;
Feske, Steven K. ;
Rost, Natalia S. ;
Romero, Javier M. ;
Viswanathan, Anand ;
Chou, Sherry H. -Y. ;
Greenberg, Steven M. ;
Rosand, Jonathan ;
Goldstein, Joshua N. .
JAMA NEUROLOGY, 2014, 71 (02) :158-164
[10]   Apolipoprotein E Genotype Predicts Hematoma Expansion in Lobar Intracerebral Hemorrhage [J].
Brouwers, H. Bart ;
Biffi, Alessandro ;
Ayres, Alison M. ;
Schwab, Kristin ;
Cortellini, Lynelle ;
Romero, Javier M. ;
Rost, Natalia S. ;
Viswanathan, Anand ;
Greenberg, Steven M. ;
Rosand, Jonathan ;
Goldstein, Joshua N. .
STROKE, 2012, 43 (06) :1490-+