Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture

被引:84
作者
Zhao, Zhenni [1 ]
Gong, Xinqi [1 ]
机构
[1] Renmin Univ China, Inst Math Sci, Math Intelligence Applicat LAB, 59 Zhongguancun St, Beijing 100872, Peoples R China
关键词
Proteins; Computer architecture; Recurrent neural networks; Logic gates; Machine learning; Benchmark testing; Deep network architecture; interface residue pair prediction; long-short term memory networks (LSTMs); protein-protein interaction;
D O I
10.1109/TCBB.2017.2706682
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Proteins usually fulfill their biological functions by interacting with other proteins. Although some methods have been developed to predict the binding sites of a monomer protein, these are not sufficient for prediction of the interaction between two monomer proteins. The correct prediction of interface residue pairs from two monomer proteins is still an open question and has great significance for practical experimental applications in the life sciences. We hope to build a method for the prediction of interface residue pairs that is suitable for those applications. Results: Here, we developed a novel deep network architecture called the multi-layered Long-Short Term Memory networks (LSTMs) approach for the prediction of protein interface residue pairs. First, we created three new descriptions and used other six worked characterizations to describe an amino acid, then we employed these features to discriminate between interface residue pairs and non-interface residue pairs. Second, we used two thresholds to select residue pairs that are more likely to be interface residue pairs. Furthermore, this step increases the proportion of interface residue pairs and reduces the influence of imbalanced data. Third, we built deep network architectures based on Long-Short Term Memory networks algorithm to organize and refine the prediction of interface residue pairs by employing features mentioned above. We trained the deep networks on dimers in the unbound state in the international Protein-protein Docking Benchmark version 3.0. The updated data sets in the versions 4.0 and 5.0 were used as the validation set and test set respectively. For our best model, the accuracy rate was over 62 percent when we chose the top 0.2 percent pairs of every dimer in the test set as predictions, which will be very helpful for the understanding of protein-protein interaction mechanisms and for guidance in biological experiments.
引用
收藏
页码:1753 / 1759
页数:7
相关论文
共 50 条
  • [11] Enhancing interacting residue prediction with integrated contact matrix prediction in protein-protein interaction
    Du, Tianchuan
    Liao, Li
    Wu, Cathy H.
    EURASIP JOURNAL ON BIOINFORMATICS AND SYSTEMS BIOLOGY, 2016, (01)
  • [12] DL-PPI: a method on prediction of sequenced protein-protein interaction based on deep learning
    Wu, Jiahui
    Liu, Bo
    Zhang, Jidong
    Wang, Zhihan
    Li, Jianqiang
    BMC BIOINFORMATICS, 2023, 24 (01)
  • [13] DeepSG2PPI: A Protein-Protein Interaction Prediction Method Based on Deep Learning
    Zhang, Fan
    Zhang, Yawei
    Zhu, Xiaoke
    Chen, Xiaopan
    Lu, Fuhao
    Zhang, Xinhong
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 2907 - 2919
  • [14] Some Remarks on Prediction of Protein-Protein Interaction with Machine Learning
    Zhang, Shao-Wu
    Wei, Ze-Gang
    MEDICINAL CHEMISTRY, 2015, 11 (03) : 254 - 264
  • [15] A Deep Learning and XGBoost-Based Method for Predicting Protein-Protein Interaction Sites
    Wang, Pan
    Zhang, Guiyang
    Yu, Zu-Guo
    Huang, Guohua
    FRONTIERS IN GENETICS, 2021, 12
  • [16] Combining handcrafted and learned features using deep learning to improve protein-protein interaction prediction performance
    Nhan, Tran Hoai
    Quynh, Nguyen Phuc Xuan
    Phuong, Le Anh
    JOURNAL OF INFORMATION AND TELECOMMUNICATION, 2024,
  • [17] DeepInteract: Deep Neural Network Based Protein-Protein Interaction Prediction Tool
    Patel, Sunil
    Tripathi, Rashmi
    Kumari, Vandana
    Varadwaj, Pritish
    CURRENT BIOINFORMATICS, 2017, 12 (06) : 551 - 557
  • [18] Machine learning on protein-protein interaction prediction: models, challenges and trends
    Tang, Tao
    Zhang, Xiaocai
    Liu, Yuansheng
    Peng, Hui
    Zheng, Binshuang
    Yin, Yanlin
    Zeng, Xiangxiang
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (02)
  • [19] Protein-protein docking with interface residue restraints*
    Li, Hao
    Huang, Sheng-You
    CHINESE PHYSICS B, 2021, 30 (01)
  • [20] AutoPPI: An Ensemble of Deep Autoencoders for Protein-Protein Interaction Prediction
    Czibula, Gabriela
    Albu, Alexandra-Ioana
    Bocicor, Maria Iuliana
    Chira, Camelia
    ENTROPY, 2021, 23 (06)