The Boundary of Lithium Plating in Graphite Electrode for Safe Lithium-Ion Batteries

被引:216
作者
Cai, Wenlong [1 ]
Yan, Chong [1 ]
Yao, Yu-Xing [1 ]
Xu, Lei [2 ]
Chen, Xiao-Ru [1 ]
Huang, Jia-Qi [2 ]
Zhang, Qiang [1 ]
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing Key Lab Green Chem React Engn & Technol, Beijing 100084, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
battery safety performance; high Coulombic efficiency; lithium plating; lithium-ion batteries; uniform distribution; METAL; TEMPERATURE; CHEMISTRY; ANODES;
D O I
10.1002/anie.202102593
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Uncontrolled Li plating in graphite electrodes endangers battery life and safety, driving tremendous efforts aiming to eliminate Li plating. Herein we systematically investigate the boundary of Li plating in graphite electrode for safe lithium-ion batteries. The cell exhibits superior safety performance than that with Li dendrites by defining the endurable amount of uniform Li plating in graphite anode. The presence of "dead Li" can be eliminated owing to the uniform distribution of Li plating, and the average Coulombic efficiency for deposited Li during reversible plating/stripping process is decoupled as high as about 99.5 %. Attributing to the limited Li plating with superior Coulombic efficiency, the LiNi0.5Mn0.3Co0.2O2 | graphite cell achieves a high capacity retention of 80.2 % over 500 cycles. This work sheds a different light on further improving the fast-charging capability, low-temperature performance, and energy density of practical lithium-ion batteries.
引用
收藏
页码:13007 / 13012
页数:6
相关论文
共 43 条
[1]  
[Anonymous], 2021, ANGEW CHEM, V133, P3444
[2]  
[Anonymous], 2018, ANGEW CHEM, V130, P14251
[3]  
[Anonymous], 2020, ANGEW CHEM, V132, P22378
[4]   The success story of graphite as a lithium-ion anode material - fundamentals, remaining challenges, and recent developments including silicon (oxide) composites [J].
Asenbauer, Jakob ;
Eisenmann, Tobias ;
Kuenzel, Matthias ;
Kazzazi, Arefeh ;
Chen, Zhen ;
Bresser, Dominic .
SUSTAINABLE ENERGY & FUELS, 2020, 4 (11) :5387-5416
[5]   Rapid Lithium Diffusion in Order@Disorder Pathways for Fast-Charging Graphite Anodes [J].
Cai, Wenlong ;
Yan, Chong ;
Yao, Yu-Xing ;
Xu, Lei ;
Xu, Rui ;
Jiang, Li-Li ;
Huang, Jia-Qi ;
Zhang, Qiang .
SMALL STRUCTURES, 2020, 1 (01)
[6]   A review on energy chemistry of fast-charging anodes [J].
Cai, Wenlong ;
Yao, Yu-Xing ;
Zhu, Gao-Long ;
Yan, Chong ;
Jiang, Li-Li ;
He, Chuanxin ;
Huang, Jia-Qi ;
Zhang, Qiang .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (12) :3806-3833
[7]   Nonflammable Electrolytes for Lithium Ion Batteries Enabled by Ultraconformal Passivation Interphases [J].
Cao, Xia ;
Xu, Yaobin ;
Zhang, Linchao ;
Engelhard, Mark H. ;
Zhong, Lirong ;
Ren, Xiaodi ;
Jia, Haiping ;
Liu, Bin ;
Niu, Chaojiang ;
Matthews, Bethany E. ;
Wu, Haiping ;
Arey, Bruce W. ;
Wang, Chongmin ;
Zhang, Ji-Guang ;
Xu, Wu .
ACS ENERGY LETTERS, 2019, 4 (10) :2529-2534
[8]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[9]   Partly lithiated graphitic carbon foam as 3D porous current collectors for dendrite-free lithium metal anodes [J].
Chen, Tao ;
Jia, Weishang ;
Yao, Zeyu ;
Liu, Yuchi ;
Guan, Xin ;
Li, Kewei ;
Xiao, Julan ;
Liu, Hongli ;
Chen, Ying ;
Zhou, Yong ;
Sun, Daming ;
Li, Jingze .
ELECTROCHEMISTRY COMMUNICATIONS, 2019, 107
[10]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473