Deep Learning-Based Classification of Inflammatory Arthritis by Identification of Joint Shape Patterns-How Neural Networks Can Tell Us Where to "Deep Dive" Clinically

被引:20
作者
Folle, Lukas [1 ]
Simon, David [2 ,3 ,4 ]
Tascilar, Koray [2 ,3 ,4 ]
Kroenke, Gerhard [2 ,3 ,4 ]
Liphardt, Anna-Maria [2 ,3 ,4 ]
Maier, Andreas [1 ]
Schett, Georg [2 ,3 ,4 ]
Kleyer, Arnd [2 ,3 ,4 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Pattern Recognit Lab Comp Sci, Erlangen, Germany
[2] FAU Erlangen Nurnberg, Dept Internal Med Rheumatol & Immunol 3, Erlangen, Germany
[3] Univ Klinikum Erlangen, Erlangen, Germany
[4] FAU Erlangen Nurnberg, Deutsch Zent Immuntherapie, Erlangen, Germany
关键词
artificial intelligence; arthritis; joint; bone; deep learning; RHEUMATOID-ARTHRITIS; BONE; CRITERIA;
D O I
10.3389/fmed.2022.850552
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective:We investigated whether a neural network based on the shape of joints can differentiate between rheumatoid arthritis (RA), psoriatic arthritis (PsA), and healthy controls (HC), which class patients with undifferentiated arthritis (UA) are assigned to, and whether this neural network is able to identify disease-specific regions in joints. MethodsWe trained a novel neural network on 3D articular bone shapes of hand joints of RA and PsA patients as well as HC. Bone shapes were created from high-resolution peripheral-computed-tomography (HR-pQCT) data of the second metacarpal bone head. Heat maps of critical spots were generated using GradCAM. After training, we fed shape patterns of UA into the neural network to classify them into RA, PsA, or HC. ResultsHand bone shapes from 932 HR-pQCT scans of 617 patients were available. The network could differentiate the classes with an area-under-receiver-operator-curve of 82% for HC, 75% for RA, and 68% for PsA. Heat maps identified anatomical regions such as bare area or ligament attachments prone to erosions and bony spurs. When feeding UA data into the neural network, 86% were classified as "RA," 11% as "PsA," and 3% as "HC" based on the joint shape. ConclusionWe investigated neural networks to differentiate the shape of joints of RA, PsA, and HC and extracted disease-specific characteristics as heat maps on 3D joint shapes that can be utilized in clinical routine examination using ultrasound. Finally, unspecific diseases such as UA could be grouped using the trained network based on joint shape.
引用
收藏
页数:8
相关论文
共 29 条
[1]   2010 Rheumatoid Arthritis Classification Criteria An American College of Rheumatology/European League Against Rheumatism Collaborative Initiative [J].
Aletaha, Daniel ;
Neogi, Tuhina ;
Silman, Alan J. ;
Funovits, Julia ;
Felson, David T. ;
Bingham, Clifton O., III ;
Birnbaum, Neal S. ;
Burmester, Gerd R. ;
Bykerk, Vivian P. ;
Cohen, Marc D. ;
Combe, Bernard ;
Costenbader, Karen H. ;
Dougados, Maxime ;
Emery, Paul ;
Ferraccioli, Gianfranco ;
Hazes, Johanna M. W. ;
Hobbs, Kathryn ;
Huizinga, Tom W. J. ;
Kavanaugh, Arthur ;
Kay, Jonathan ;
Kvien, Tore K. ;
Laing, Timothy ;
Mease, Philip ;
Menard, Henri A. ;
Moreland, Larry W. ;
Naden, Raymond L. ;
Pincus, Theodore ;
Smolen, Josef S. ;
Stanislawska-Biernat, Ewa ;
Symmons, Deborah ;
Tak, Paul P. ;
Upchurch, Katherine S. ;
Vencovsky, Jiri ;
Wolfe, Frederick ;
Hawker, Gillian .
ARTHRITIS AND RHEUMATISM, 2010, 62 (09) :2569-2581
[2]   The "enthesis organ" concept - Why enthesopathies may not present as focal insertional disorders [J].
Benjamin, M ;
Moriggl, B ;
Brenner, E ;
Emery, P ;
McGonagle, D ;
Redman, S .
ARTHRITIS AND RHEUMATISM, 2004, 50 (10) :3306-3313
[3]   The anatomical basis for disease localisation in seronegative spondyloarthropathy at entheses and related sites [J].
Benjamin, M ;
McGonagle, D .
JOURNAL OF ANATOMY, 2001, 199 :503-526
[4]   The ageing joint-standard age- and sex-related values of bone erosions and osteophytes in the hand joints of healthy individuals [J].
Berlin, A. ;
Simon, D. ;
Tascilar, K. ;
Figueiredo, C. ;
Bayat, S. ;
Finzel, S. ;
Klaus, E. ;
Rech, J. ;
Hueber, A. J. ;
Kleyer, A. ;
Schett, G. .
OSTEOARTHRITIS AND CARTILAGE, 2019, 27 (07) :1043-1047
[5]   Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative [J].
Bowes, Michael A. ;
Kacena, Katherine ;
Alabas, Oras A. ;
Brett, Alan D. ;
Dube, Bright ;
Bodick, Neil ;
Conaghan, Philip G. .
ANNALS OF THE RHEUMATIC DISEASES, 2021, 80 (04) :502-508
[6]   Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance [J].
Bressem, Keno K. ;
Vahldiek, Janis L. ;
Adams, Lisa ;
Niehues, Stefan Markus ;
Haibel, Hildrun ;
Rodriguez, Valeria Rios ;
Torgutalp, Murat ;
Protopopov, Mikhail ;
Proft, Fabian ;
Rademacher, Judith ;
Sieper, Joachim ;
Rudwaleit, Martin ;
Hamm, Bernd ;
Makowski, Marcus R. ;
Hermann, Kay-Geert ;
Poddubnyy, Denis .
ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
[7]  
CHINCHOR N, 1992, FOURTH MESSAGE UNDERSTANDING CONFERENCE (MUC-4), P22
[8]   Applying cascaded convolutional neural network design further enhances automatic scoring of arthritis disease activity on ultrasound images from rheumatoid arthritis patients [J].
Christensen, Anders Bossel Holst ;
Just, Soren Andreas ;
Andersen, Jakob Kristian Holm ;
Savarimuthu, Thiusius Rajeeth .
ANNALS OF THE RHEUMATIC DISEASES, 2020, 79 (09) :1189-1193
[9]   A comparative study of periarticular bone lesions in rheumatoid arthritis and psoriatic arthritis [J].
Finzel, Stephanie ;
Englbrecht, Matthias ;
Engelke, Klaus ;
Stach, Christian ;
Schett, Georg .
ANNALS OF THE RHEUMATIC DISEASES, 2011, 70 (01) :122-127
[10]   Deep learning methods allow fully automated segmentation of metacarpal bones to quantify volumetric bone mineral density [J].
Folle, Lukas ;
Meinderink, Timo ;
Simon, David ;
Liphardt, Anna-Maria ;
Kroenke, Gerhard ;
Schett, Georg ;
Kleyer, Arnd ;
Maier, Andreas .
SCIENTIFIC REPORTS, 2021, 11 (01)