DiCoDiLe: Distributed Convolutional Dictionary Learning

被引:3
作者
Moreau, Thomas [1 ]
Gramfort, Alexandre [1 ]
机构
[1] Univ Paris Saclay, CEA, INRIA, F-91120 Palaiseau, France
关键词
Convolution; Dictionaries; Machine learning; Convolutional codes; Complexity theory; Data models; Computational modeling; Convolutional dictionary learning; distributed system; coordinate descent; SPARSE; ALGORITHM;
D O I
10.1109/TPAMI.2020.3039215
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional dictionary learning (CDL) estimates shift invariant basis adapted to represent signals or images. CDL has proven useful for image denoising or inpainting, as well as for pattern discovery on multivariate signals. Contrarily to standard patch-based dictionary learning, patterns estimated by CDL can be positioned anywhere in signals or images. Optimization techniques consequently face the difficulty of working with extremely large inputs with millions of pixels or time samples. To address this optimization problem, we propose a distributed and asynchronous algorithm, employing locally greedy coordinate descent and a soft-locking mechanism that does not require a central server. Computation can be distributed on a number of workers which scales linearly with the size of the data. The parallel computation accelerates the parameter estimation and the distributed setting allows our algorithm to be used with data that do not fit into a single computer's RAM. Experiments confirm the theoretical scaling properties of the algorithm. This allows to demonstrate an improved pattern recovery as images grow in size, and to learn patterns on images from the Hubble Space Telescope containing tens of millions of pixels.
引用
收藏
页码:2426 / 2437
页数:12
相关论文
共 32 条
  • [1] K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    Aharon, Michal
    Elad, Michael
    Bruckstein, Alfred
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) : 4311 - 4322
  • [2] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [3] A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems
    Beck, Amir
    Teboulle, Marc
    [J]. SIAM JOURNAL ON IMAGING SCIENCES, 2009, 2 (01): : 183 - 202
  • [4] Bergstra J., 2011, ARXIV11096638
  • [5] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [6] Fast Convolutional Sparse Coding
    Bristow, Hilton
    Eriksson, Anders
    Lucey, Simon
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 391 - 398
  • [7] Chalasani R., 2013, 2013 INT JOINT C NEU, P1, DOI [10.1109/IJCNN.2013.6706854, DOI 10.1109/IJCNN.2013.6706854]
  • [8] MPI for Python']Python
    Dalcín, L
    Paz, R
    Storti, M
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2005, 65 (09) : 1108 - 1115
  • [9] PATHWISE COORDINATE OPTIMIZATION
    Friedman, Jerome
    Hastie, Trevor
    Hoefling, Holger
    Tibshirani, Robert
    [J]. ANNALS OF APPLIED STATISTICS, 2007, 1 (02) : 302 - 332
  • [10] The Great Observatories Origins Deep Survey: Initial results from optical and near-infrared imaging
    Giavalisco, M
    Ferguson, HC
    Koekemoer, AM
    Dickinson, M
    Alexander, DM
    Bauer, FE
    Bergeron, J
    Biagetti, C
    Brandt, WN
    Casertano, S
    Cesarsky, C
    Chatzichristou, E
    Conselice, C
    Cristiani, S
    Da Costa, L
    Dahlen, T
    de Mello, D
    Eisenhardt, P
    Erben, T
    Fall, SM
    Fassnacht, C
    Fosbury, R
    Fruchter, A
    Gardner, JP
    Grogin, N
    Hook, RN
    Hornschemeier, AE
    Idzi, R
    Jogee, S
    Kretchmer, C
    Laidler, V
    Lee, KS
    Livio, M
    Lucas, R
    Madau, P
    Mobasher, B
    Moustakas, LA
    Nonino, M
    Padovani, P
    Papovich, C
    Park, Y
    Ravindranath, S
    Renzini, A
    Richardson, M
    Riess, A
    Rosati, P
    Schirmer, M
    Schreier, E
    Somerville, RS
    Spinrad, H
    [J]. ASTROPHYSICAL JOURNAL, 2004, 600 (02) : L93 - L98