Long-read sequencing and de novo genome assembly of Ammopiptanthus nanus, a desert shrub

被引:35
|
作者
Gao, Fei [1 ]
Wang, Xue [1 ]
Li, Xuming [2 ]
Xu, Mingyue [2 ]
Li, Huayun [3 ]
Abla, Merhaba [1 ]
Sun, Huigai [1 ]
Wei, Shanjun [1 ]
Feng, Jinchao [1 ]
Zhou, Yijun [1 ]
机构
[1] Minzu Univ China, Coll Life & Evironm Sci, 27 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Biomarker Technol Corp, Floor 8,Shunjie Bldg,12 Fuqian Rd, Beijing 101300, Peoples R China
[3] Annoroad Genom, Beijing Econ Technol Dev Area, Bldg B1,Yard 88,Kechuang Six Rd, Beijing 100176, Peoples R China
来源
GIGASCIENCE | 2018年 / 7卷 / 07期
基金
中国国家自然科学基金;
关键词
Ammopiptanthus nanus; PacBio sequencing; genome assembly; genome annotation; PROVIDES INSIGHTS; PREDICTION; IDENTIFICATION; CLASSIFICATION; ANNOTATION; ALIGNMENT; TOOL;
D O I
10.1093/gigascience/giy074
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Ammopiptanthus nanus is a rare broad-leaved shrub that is found in the desert and arid regions of Central Asia. This plant species exhibits extremely high tolerance to drought and freezing and has been used in abiotic tolerance research in plants. As a relic of the tertiary period, A. nanus is of great significance to plant biogeographic research in the ancient Mediterranean region. Here, we report a draft genome assembly using the Pacific Biosciences (PacBio) platform and gene annotation for A. nanus. Findings: A total of 64.72 Gb of raw PacBio sequel reads were generated from four 20-kb libraries. After filtering, 64.53 Gb of clean reads were obtained, giving 72.59x coverage depth. Assembly using Canu gave an assembly length of 823.74 Mb, with a contig N50 of 2.76 Mb. The final size of the assembled A. nanus genome was close to the 889 Mb estimated by k-mer analysis. The gene annotation completeness was evaluated using Benchmarking Universal Single-Copy Orthologs; 1,327 of the 1,440 conserved genes (92.15%) could be found in the A. nanus assembly. Genome annotation revealed that 74.08% of the A. nanus genome is composed of repetitive elements and 53.44% is composed of long terminal repeat elements. We predicted 37,188 protein-coding genes, of which 96.53% were functionally annotated. Conclusions: The genomic sequences of A. nanus could be a valuable source for comparative genomic analysis in the legume family and will be useful for understanding the phylogenetic relationships of the Thermopsideae and the evolutionary response of plant species to the Qinghai Tibetan Plateau uplift.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Improved contiguity of the threespine stickleback genome using long-read sequencing
    Nath, Shivangi
    Shaw, Daniel E.
    White, Michael A.
    G3-GENES GENOMES GENETICS, 2021, 11 (02):
  • [32] Evaluation of tangential flow filtration coupled to long-read sequencing for ostreid herpesvirus type 1 genome assembly
    Dotto-Maurel, Aurelie
    Pelletier, Camille
    Morga, Benjamin
    Jacquot, Maude
    Faury, Nicole
    Degremont, Lionel
    Bereszczynki, Maelis
    Delmotte, Jean
    Escoubas, Jean-Michel
    Chevignon, Germain
    MICROBIAL GENOMICS, 2022, 8 (11):
  • [33] High Contiguity de novo Genome Sequence Assembly of Trifoliate Yam (Dioscorea dumetorum) Using Long Read Sequencing
    Siadjeu, Christian
    Pucker, Boas
    Viehoever, Prisca
    Albach, Dirk C.
    Weisshaar, Bernd
    GENES, 2020, 11 (03)
  • [34] Expanding an expanded genome: long-read sequencing of Trypanosoma cruzi
    Berna, Luisa
    Rodriguez, Matias
    Laura Chiribao, Maria
    Parodi-Talice, Adriana
    Pita, Sebastian
    Rijo, Gaston
    Alvarez-Valin, Fernando
    Robello, Carlos
    MICROBIAL GENOMICS, 2018, 4 (05):
  • [35] A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species
    Sutton, Jolene T.
    Helmkampf, Martin
    Steiner, Cynthia C.
    Bellinger, M. Renee
    Korlach, Jonas
    Hall, Richard
    Baybayan, Primo
    Muehling, Jill
    Gu, Jenny
    Kingan, Sarah
    Masuda, Bryce M.
    Ryder, Oliver A.
    GENES, 2018, 9 (08):
  • [36] De novo assembly of the olive fruit fly (Bactrocera oleae) genome with linked-reads and long-read technologies minimizes gaps and provides exceptional Y chromosome assembly
    Bayega, Anthony
    Djambazian, Haig
    Tsoumani, Konstantina T.
    Gregoriou, Maria-Eleni
    Sagri, Efthimia
    Drosopoulou, Eleni
    Mavragani-Tsipidou, Penelope
    Giorda, Kristina
    Tsiamis, George
    Bourtzis, Kostas
    Oikonomopoulos, Spyridon
    Dewar, Ken
    Church, Deanna M.
    Papanicolaou, Alexie
    Mathiopoulos, Kostas D.
    Ragoussis, Jiannis
    BMC GENOMICS, 2020, 21 (01)
  • [37] A de novo chromosome-scale assembly of the Lablab purpureus genome
    Pootakham, Wirulda
    Somta, Prakit
    Kongkachana, Wasitthee
    Naktang, Chaiwat
    Sonthirod, Chutima
    U-Thoomporn, Sonicha
    Yoocha, Thippawan
    Phadphon, Poompat
    Tangphatsornruang, Sithichoke
    FRONTIERS IN PLANT SCIENCE, 2024, 15
  • [38] Construction of a chromosome-scale long-read reference genome assembly for potato
    Pham, Gina M.
    Hamilton, John P.
    Wood, Joshua C.
    Burke, Joseph T.
    Zhao, Hainan
    Vaillancourt, Brieanne
    Ou, Shujun
    Jiang, Jiming
    Buell, C. Robin
    GIGASCIENCE, 2020, 9 (09):
  • [39] A de novo assembly of the sweet cherry (Prunus avium cv. Tieton) genome using linked-read sequencing technology
    Wang, Jiawei
    Liu, Weizhen
    Zhu, Dongzi
    Zhou, Xiang
    Hong, Po
    Zhao, Hongjun
    Tan, Yue
    Chen, Xin
    Zong, Xiaojuan
    Xu, Li
    Zhang, Lisi
    Wei, Hairong
    Liu, Qingzhong
    PEERJ, 2020, 8
  • [40] De novo sequencing and chromosomal-scale genome assembly of leopard coral grouper,Plectropomus leopardus
    Zhou, Qian
    Guo, Xinyu
    Huang, Yang
    Gao, Haoyang
    Xu, Hao
    Liu, Shanshan
    Zheng, Weiwei
    Zhang, Tianshi
    Tian, Changxu
    Zhu, Chunhua
    Lin, Haoran
    Chen, Songlin
    MOLECULAR ECOLOGY RESOURCES, 2020, 20 (05) : 1403 - 1413