A characterization of the folk rule for multi-source minimal cost spanning tree problems

被引:3
作者
Bergantinos, G. [1 ]
Navarro-Ramos, A. [1 ]
机构
[1] Univ Vigo, Fac Econ, Econ Soc & Terr, Campus Lagoas Marcosende S-N, Vigo, Pontevedra, Spain
关键词
Minimum cost spanning tree problems with multiple sources; Folk rule; Axiomatic characterization; MONOTONICITY; ALLOCATION;
D O I
10.1016/j.orl.2019.07.002
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper we provide an axiomatic characterization of the folk rule for minimum cost spanning tree problems with multiple sources. The properties we need are: cone-wise additivity, cost monotonicity, symmetry, isolated agents, and equal treatment of source costs. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:366 / 370
页数:5
相关论文
共 11 条
[1]   The folk rule through a painting procedure for minimum cost spanning tree problems with multiple sources [J].
Bergantinos, G. ;
Navarro-Ramos, A. .
MATHEMATICAL SOCIAL SCIENCES, 2019, 99 :43-48
[2]   A new rule for source connection problems [J].
Bergantinos, G. ;
Gomez-Rua, M. ;
Llorca, N. ;
Pulido, M. ;
Sanchez-Soriano, J. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 234 (03) :780-788
[3]  
Bergantinos G., 2019, COST ADDITIVE UNPUB
[4]  
Bergantinos G., 2019, FOLK RULE MINI UNPUB
[5]   A generalization of obligation rules for minimum cost spanning tree problems [J].
Bergantinos, Gustavo ;
Lorenzo, Leticia ;
Lorenzo-Freire, Silvia .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 211 (01) :122-129
[6]   COST ALLOCATION FOR A SPANNING TREE - GAME THEORETIC APPROACH [J].
BIRD, CG .
NETWORKS, 1976, 6 (04) :335-350
[7]   Cost monotonicity, consistency and minimum cost spanning tree games [J].
Dutta, B ;
Kar, A .
GAMES AND ECONOMIC BEHAVIOR, 2004, 48 (02) :223-248
[8]  
Kruskal Joseph B, 1956, Proceedings of the American Mathematical society, V7, P48
[9]   Minimum cost spanning tree games and population monotonic allocation schemes [J].
Norde, H ;
Moretti, S ;
Tijs, S .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 154 (01) :84-97
[10]   SHORTEST CONNECTION NETWORKS AND SOME GENERALIZATIONS [J].
PRIM, RC .
BELL SYSTEM TECHNICAL JOURNAL, 1957, 36 (06) :1389-1401