Upper bounds on fault tolerance thresholds of noisy Clifford-based quantum computers

被引:11
|
作者
Plenio, M. B. [2 ,3 ,4 ]
Virmani, S. [1 ,3 ]
机构
[1] Univ Strathclyde, Dept Phys SUPA, Glasgow G4 0NG, Lanark, Scotland
[2] Univ Ulm, Inst Theoret Phys, D-89069 Ulm, Germany
[3] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2PG, England
[4] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, QOLS, London SW7 2BW, England
来源
NEW JOURNAL OF PHYSICS | 2010年 / 12卷
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATION; ENTANGLEMENT;
D O I
10.1088/1367-2630/12/3/033012
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the possibility of adding noise to a quantum circuit to make it efficiently simulatable classically. In previous works, this approach has been used to derive upper bounds to fault tolerance thresholds-usually by identifying a privileged resource, such as an entangling gate or a non-Clifford operation, and then deriving the noise levels required to make it 'unprivileged'. In this work, we consider extensions of this approach where noise is added to Clifford gates too and then 'commuted' around until it concentrates on attacking the non-Clifford resource. While commuting noise around is not always straightforward, we find that easy instances can be identified in popular fault tolerance proposals, thereby enabling sharper upper bounds to be derived in these cases. For instance we find that if we take Knill's (2005 Nature 434 39) fault tolerance proposal together with the ability to prepare any possible state in the XY plane of the Bloch sphere, then not more than 3.69% error-per-gate noise is sufficient to make it classical, and 13.71% of Knill's gamma noise model is sufficient. These bounds have been derived without noise being added to the decoding parts of the circuits. Introducing such noise in a toy example suggests that the present approach can be optimized further to yield tighter bounds.
引用
收藏
页数:19
相关论文
共 33 条
  • [1] Clifford-based Circuit Cutting for Quantum Simulation
    Smith, Kaitlin N.
    Perlin, Michael A.
    Gokhale, Pranav
    Frederick, Paige
    Owusu-Antwi, David
    Rines, Richard
    Omole, Victory
    Chong, Frederic T.
    PROCEEDINGS OF THE 2023 THE 50TH ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE, ISCA 2023, 2023, : 1174 - 1186
  • [2] Polarization of Quantum Channels Using Clifford-Based Channel Combining
    Dupuis, Frederic
    Goswami, Ashutosh
    Mhalla, Mehdi
    Savin, Valentin
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (05) : 2857 - 2877
  • [3] Volume thresholds for quantum fault tolerance
    Vaneet Aggarwal
    A. Robert Calderbank
    Gerald Gilbert
    Yaakov S. Weinstein
    Quantum Information Processing, 2010, 9 : 541 - 549
  • [4] Volume thresholds for quantum fault tolerance
    Aggarwal, Vaneet
    Calderbank, A. Robert
    Gilbert, Gerald
    Weinstein, Yaakov S.
    QUANTUM INFORMATION PROCESSING, 2010, 9 (05) : 541 - 549
  • [5] Toward Chemical Accuracy with Shallow Quantum Circuits: A Clifford-Based Hamiltonian Engineering Approach
    Sun, Jiace
    Cheng, Lixue
    Li, Weitang
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2024, 20 (02) : 695 - 707
  • [6] Benchmarking quantum logic operations relative to thresholds for fault tolerance
    Akel Hashim
    Stefan Seritan
    Timothy Proctor
    Kenneth Rudinger
    Noah Goss
    Ravi K. Naik
    John Mark Kreikebaum
    David I. Santiago
    Irfan Siddiqi
    npj Quantum Information, 9
  • [7] Benchmarking quantum logic operations relative to thresholds for fault tolerance
    Hashim, Akel
    Seritan, Stefan
    Proctor, Timothy
    Rudinger, Kenneth
    Goss, Noah
    Naik, Ravi K.
    Kreikebaum, John Mark
    Santiago, David I.
    Siddiqi, Irfan
    NPJ QUANTUM INFORMATION, 2023, 9 (01)
  • [8] UPPER BOUNDS ON THE NOISE THRESHOLD FOR FAULT-TOLERANT QUANTUM COMPUTING
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 361 - 376
  • [9] Upper bounds on the noise threshold for fault-tolerant quantum computing
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 845 - +
  • [10] IMPROVED BOUNDS FOR ALGORITHM-BASED FAULT-TOLERANCE
    ROSENKRANTZ, DJ
    RAVI, SS
    IEEE TRANSACTIONS ON COMPUTERS, 1993, 42 (05) : 630 - 635