Enhancer variants associated with Alzheimer's disease affect gene expression via chromatin looping

被引:51
作者
Kikuchi, Masataka [1 ]
Hara, Norikazu [2 ]
Hasegawa, Mai [1 ]
Miyashita, Akinori [2 ]
Kuwano, Ryozo [2 ,3 ]
Ikeuchi, Takeshi [2 ]
Nakaya, Akihiro [1 ]
机构
[1] Osaka Univ, Grad Sch Med, Dept Genome Informat, 2-2 Yamadaoka, Suita, Osaka 5650871, Japan
[2] Niigata Univ, Brain Res Inst, Dept Mol Genet, Niigata, Japan
[3] Asahigawaso Res Inst, Asahigawaso Med Welf Ctr, Okayama, Japan
关键词
Alzheimer's disease; Genome-wide association study; Non-coding variants; Chromatin higher-order structure; GENOME-WIDE ASSOCIATION; IDENTIFIES VARIANTS; COMMON VARIANTS; BINDING; LOCI; CLU; CEREBELLUM; TOPOLOGY; INSULIN; PICALM;
D O I
10.1186/s12920-019-0574-8
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background Genome-wide association studies (GWASs) have identified single-nucleotide polymorphisms (SNPs) that may be genetic factors underlying Alzheimer's disease (AD). However, how these AD-associated SNPs (AD SNPs) contribute to the pathogenesis of this disease is poorly understood because most of them are located in non-coding regions, such as introns and intergenic regions. Previous studies reported that some disease-associated SNPs affect regulatory elements including enhancers. We hypothesized that non-coding AD SNPs are located in enhancers and affect gene expression levels via chromatin loops. Methods To characterize AD SNPs within non-coding regions, we extracted 406 AD SNPs with GWAS p-values of less than 1.00 x 10(- 6) from the GWAS catalog database. Of these, we selected 392 SNPs within non-coding regions. Next, we checked whether those non-coding AD SNPs were located in enhancers that typically regulate gene expression levels using publicly available data for enhancers that were predicted in 127 human tissues or cell types. We sought expression quantitative trait locus (eQTL) genes affected by non-coding AD SNPs within enhancers because enhancers are regulatory elements that influence the gene expression levels. To elucidate how the non-coding AD SNPs within enhancers affect the gene expression levels, we identified chromatin-chromatin interactions by Hi-C experiments. Results We report the following findings: (1) nearly 30% of non-coding AD SNPs are located in enhancers; (2) eQTL genes affected by non-coding AD SNPs within enhancers are associated with amyloid beta clearance, synaptic transmission, and immune responses; (3) 95% of the AD SNPs located in enhancers co-localize with their eQTL genes in topologically associating domains suggesting that regulation may occur through chromatin higher-order structures; (4) rs1476679 spatially contacts the promoters of eQTL genes via CTCF-CTCF interactions; (5) the effect of other AD SNPs such as rs7364180 is likely to be, at least in part, indirect through regulation of transcription factors that in turn regulate AD associated genes. Conclusion Our results suggest that non-coding AD SNPs may affect the function of enhancers thereby influencing the expression levels of surrounding or distant genes via chromatin loops. This result may explain how some non-coding AD SNPs contribute to AD pathogenesis.
引用
收藏
页数:15
相关论文
共 66 条
[1]   Genetic effects on gene expression across human tissues [J].
Aguet, Francois ;
Brown, Andrew A. ;
Castel, Stephane E. ;
Davis, Joe R. ;
He, Yuan ;
Jo, Brian ;
Mohammadi, Pejman ;
Park, Yoson ;
Parsana, Princy ;
Segre, Ayellet V. ;
Strober, Benjamin J. ;
Zappala, Zachary ;
Cummings, Beryl B. ;
Gelfand, Ellen T. ;
Hadley, Kane ;
Huang, Katherine H. ;
Lek, Monkol ;
Li, Xiao ;
Nedzel, Jared L. ;
Nguyen, Duyen Y. ;
Noble, Michael S. ;
Sullivan, Timothy J. ;
Tukiainen, Taru ;
MacArthur, Daniel G. ;
Getz, Gad ;
Management, Nih Program ;
Addington, Anjene ;
Guan, Ping ;
Koester, Susan ;
Little, A. Roger ;
Lockhart, Nicole C. ;
Moore, Helen M. ;
Rao, Abhi ;
Struewing, Jeffery P. ;
Volpi, Simona ;
Collection, Biospecimen ;
Brigham, Lori E. ;
Hasz, Richard ;
Hunter, Marcus ;
Johns, Christopher ;
Johnson, Mark ;
Kopen, Gene ;
Leinweber, William F. ;
Lonsdale, John T. ;
McDonald, Alisa ;
Mestichelli, Bernadette ;
Myer, Kevin ;
Roe, Bryan ;
Salvatore, Michael ;
Shad, Saboor .
NATURE, 2017, 550 (7675) :204-+
[2]   Late-onset Alzheimer disease risk variants mark brain regulatory loci [J].
Allen, Mariet ;
Kachadoorian, Michaela ;
Carrasquillo, Minerva M. ;
Karhade, Aditya ;
Manly, Lester ;
Burgess, Jeremy D. ;
Wang, Chen ;
Serie, Daniel ;
Wang, Xue ;
Siuda, Joanna ;
Zou, Fanggeng ;
Chai, High Seng ;
Younkin, Curtis ;
Crook, Julia ;
Medway, Christopher ;
Thuy Nguyen ;
Ma, Li ;
Malphrus, Kimberly ;
Lincoln, Sarah ;
Petersen, Ronald C. ;
Graff-Radford, Neill R. ;
Asmann, Yan W. ;
Dickson, Dennis W. ;
Younkin, Steven G. ;
Ertekin-Taner, Nilufer .
NEUROLOGY-GENETICS, 2015, 1 (02)
[3]   The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans [J].
Ardlie, Kristin G. ;
DeLuca, David S. ;
Segre, Ayellet V. ;
Sullivan, Timothy J. ;
Young, Taylor R. ;
Gelfand, Ellen T. ;
Trowbridge, Casandra A. ;
Maller, Julian B. ;
Tukiainen, Taru ;
Lek, Monkol ;
Ward, Lucas D. ;
Kheradpour, Pouya ;
Iriarte, Benjamin ;
Meng, Yan ;
Palmer, Cameron D. ;
Esko, Tonu ;
Winckler, Wendy ;
Hirschhorn, Joel N. ;
Kellis, Manolis ;
MacArthur, Daniel G. ;
Getz, Gad ;
Shabalin, Andrey A. ;
Li, Gen ;
Zhou, Yi-Hui ;
Nobel, Andrew B. ;
Rusyn, Ivan ;
Wright, Fred A. ;
Lappalainen, Tuuli ;
Ferreira, Pedro G. ;
Ongen, Halit ;
Rivas, Manuel A. ;
Battle, Alexis ;
Mostafavi, Sara ;
Monlong, Jean ;
Sammeth, Michael ;
Mele, Marta ;
Reverter, Ferran ;
Goldmann, Jakob M. ;
Koller, Daphne ;
Guigo, Roderic ;
McCarthy, Mark I. ;
Dermitzakis, Emmanouil T. ;
Gamazon, Eric R. ;
Im, Hae Kyung ;
Konkashbaev, Anuar ;
Nicolae, Dan L. ;
Cox, Nancy J. ;
Flutre, Timothee ;
Wen, Xiaoquan ;
Stephens, Matthew .
SCIENCE, 2015, 348 (6235) :648-660
[4]   APP/PS1 mice overexpressing SREBP-2 exhibit combined A accumulation and tau pathology underlying Alzheimers disease [J].
Barbero-Camps, Elisabet ;
Fernandez, Anna ;
Martinez, Laura ;
Fernandez-Checa, Jose C. ;
Colell, Anna .
HUMAN MOLECULAR GENETICS, 2013, 22 (17) :3460-3476
[5]   Functional analysis of APOE locus genetic variation implicates regional enhancers in the regulation of both TOMM40 and APOE [J].
Bekris, Lynn M. ;
Lutz, Franziska ;
Yu, Chang-En .
JOURNAL OF HUMAN GENETICS, 2012, 57 (01) :18-25
[6]   FTO Obesity Variant and Adipocyte Browning in Humans [J].
O'Rahilly, Stephen ;
Coll, Anthony P. ;
Yeo, Giles S. H. .
NEW ENGLAND JOURNAL OF MEDICINE, 2016, 374 (02) :191-191
[7]   Insulin and neurodegenerative disease: shared and specific mechanisms [J].
Craft, S ;
Watson, GS .
LANCET NEUROLOGY, 2004, 3 (03) :169-178
[8]   Topological domains in mammalian genomes identified by analysis of chromatin interactions [J].
Dixon, Jesse R. ;
Selvaraj, Siddarth ;
Yue, Feng ;
Kim, Audrey ;
Li, Yan ;
Shen, Yin ;
Hu, Ming ;
Liu, Jun S. ;
Ren, Bing .
NATURE, 2012, 485 (7398) :376-380
[9]   An integrated encyclopedia of DNA elements in the human genome [J].
Dunham, Ian ;
Kundaje, Anshul ;
Aldred, Shelley F. ;
Collins, Patrick J. ;
Davis, CarrieA. ;
Doyle, Francis ;
Epstein, Charles B. ;
Frietze, Seth ;
Harrow, Jennifer ;
Kaul, Rajinder ;
Khatun, Jainab ;
Lajoie, Bryan R. ;
Landt, Stephen G. ;
Lee, Bum-Kyu ;
Pauli, Florencia ;
Rosenbloom, Kate R. ;
Sabo, Peter ;
Safi, Alexias ;
Sanyal, Amartya ;
Shoresh, Noam ;
Simon, Jeremy M. ;
Song, Lingyun ;
Trinklein, Nathan D. ;
Altshuler, Robert C. ;
Birney, Ewan ;
Brown, James B. ;
Cheng, Chao ;
Djebali, Sarah ;
Dong, Xianjun ;
Dunham, Ian ;
Ernst, Jason ;
Furey, Terrence S. ;
Gerstein, Mark ;
Giardine, Belinda ;
Greven, Melissa ;
Hardison, Ross C. ;
Harris, Robert S. ;
Herrero, Javier ;
Hoffman, Michael M. ;
Iyer, Sowmya ;
Kellis, Manolis ;
Khatun, Jainab ;
Kheradpour, Pouya ;
Kundaje, Anshul ;
Lassmann, Timo ;
Li, Qunhua ;
Lin, Xinying ;
Marinov, Georgi K. ;
Merkel, Angelika ;
Mortazavi, Ali .
NATURE, 2012, 489 (7414) :57-74
[10]   Large-scale imputation of epigenomic datasets for systematic annotation of diverse human tissues [J].
Ernst, Jason ;
Kellis, Manolis .
NATURE BIOTECHNOLOGY, 2015, 33 (04) :364-U74