Nonlinear dynamic modelling of flexible beam structures using neural networks

被引:0
作者
Hashim, SZM [1 ]
Tokhi, MO [1 ]
Darus, IZM [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
ICM '04: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS 2004 | 2004年
关键词
system identification; neural networks; flexible beam; non-linear system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the utilisation of back propagation neural networks (NNs) for modelling flexible beam structures in fixed-free mode; a simple repsentation of an aircraft wing or robot arm. A comparative performance of the NN model and conventional recursive least square scheme, in characterising the system is carried out in the time and frequency domains. Simulated results demonstrate that using NN approach the system is modelled better than with the conventional linear modelling approach. The developed neuro-modelling approach will further be utilized in the design and implementation of suitable controllers, for vibration suppression in such system.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
[41]   Linear-Quadratic Cost Function for Dynamic System Modelling Using Recurrent Neural Networks [J].
Sitompul, Erwin .
2013 INTERNATIONAL CONFERENCE ON COMPUTER, CONTROL, INFORMATICS AND ITS APPLICATIONS (IC3INA), 2013, :237-242
[42]   NARX neural networks for nonlinear analysis of structures in frequency domain [J].
Kao, Ching-Yun ;
Loh, Chin-Hsiung .
JOURNAL OF THE CHINESE INSTITUTE OF ENGINEERS, 2008, 31 (05) :791-804
[43]   Lyapunov Theory-Based Fusion Neural Networks for the Identification of Dynamic Nonlinear Systems [J].
Plakias, Spyridon ;
Boutalis, Yiannis S. .
INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2019, 29 (09)
[44]   Soft Sensors to Monitoring a Multivariate Nonlinear Process Using Neural Networks [J].
Brunet Monteiro, Nathalia Arthur ;
da Silva, Jaidilson Jo ;
da Rocha Neto, Jose Sergio .
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS, 2019, 30 (01) :54-62
[45]   Soft Sensors to Monitoring a Multivariate Nonlinear Process Using Neural Networks [J].
Nathalia Arthur Brunet Monteiro ;
Jaidilson Jó da Silva ;
José Sérgio da Rocha Neto .
Journal of Control, Automation and Electrical Systems, 2019, 30 :54-62
[46]   Nonlinear multivariable adaptive control using multiple models and neural networks [J].
Fu, Yue ;
Chai, Tianyou .
AUTOMATICA, 2007, 43 (06) :1101-1110
[47]   Characterization of flexible and stretchable sensors using neural networks [J].
Nguyen, Xuan Anh ;
Chauhan, Sunita .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (07)
[48]   Stable identification of nonlinear systems using neural networks: Theory and experiments [J].
Abdollahi, Farzaneh ;
Talebi, H. Ali ;
Patel, Rajnikant V. .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2006, 11 (04) :488-495
[49]   An efficient parameterization of dynamic neural networks for nonlinear system identification [J].
Becerra, VM ;
Garces, FR ;
Nasuto, SJ ;
Holderbaum, W .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2005, 16 (04) :983-988
[50]   Sequential training of bootstrap aggregated neural networks for nonlinear systems modelling [J].
Zhang, J .
PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 :531-536