Nonlinear dynamic modelling of flexible beam structures using neural networks

被引:0
作者
Hashim, SZM [1 ]
Tokhi, MO [1 ]
Darus, IZM [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
ICM '04: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS 2004 | 2004年
关键词
system identification; neural networks; flexible beam; non-linear system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the utilisation of back propagation neural networks (NNs) for modelling flexible beam structures in fixed-free mode; a simple repsentation of an aircraft wing or robot arm. A comparative performance of the NN model and conventional recursive least square scheme, in characterising the system is carried out in the time and frequency domains. Simulated results demonstrate that using NN approach the system is modelled better than with the conventional linear modelling approach. The developed neuro-modelling approach will further be utilized in the design and implementation of suitable controllers, for vibration suppression in such system.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
[31]   Dynamic Analysis of Nonlinear Frames by Prandtl Neural Networks [J].
Joghataie, Abdolreza ;
Farrokh, Mojtaba .
JOURNAL OF ENGINEERING MECHANICS, 2008, 134 (11) :961-969
[32]   Nonlinear tracking control via dynamic neural networks [J].
Song, YD ;
Liao, XH ;
Castelli, V .
CCCT 2003, VOL6, PROCEEDINGS: COMPUTER, COMMUNICATION AND CONTROL TECHNOLOGIES: III, 2003, :327-332
[33]   Nonlinear modelling of a SOFC stack by improved neural networks identification [J].
Xiao-juan Wu ;
Xin-jian Zhu ;
Guang-yi Cao ;
Heng-yong Tu .
Journal of Zhejiang University-SCIENCE A, 2007, 8 :1505-1509
[34]   Nonlinear modelling of a SOFC stack by improved neural networks identification [J].
Wu, Xiao-Juan ;
Zhu, Xin-Jian ;
Cao, Guang-Yi ;
Tu, Heng-Yong .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2007, 8 (09) :1505-1509
[35]   Recurrent neural networks for nonlinear system modelling in fault detection [J].
Schubert, M ;
Köppen-Seliger, B ;
Frank, PM .
(SAFEPROCESS'97): FAULT DETECTION, SUPERVISION AND SAFETY FOR TECHNICAL PROCESSES 1997, VOLS 1-3, 1998, :701-706
[36]   Nanoscale Materials Modelling Using Neural Networks [J].
Asproulis, Nikolaos ;
Drikakis, Dimitris .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2009, 6 (03) :514-518
[37]   Reliability modelling & prediction using neural networks [J].
Jones, JA ;
Chong, L ;
Huang, J ;
Marshall, J .
EIGHTH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2003, :40-44
[38]   MODELLING OF AIR BENDING USING NEURAL NETWORKS [J].
Barbosa, M. R. ;
Santos, Abel D. ;
Pacheco, J. Bessa .
11TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS; 5TH EUROPEAN CONFERENCE ON COMPUTATIONAL MECHANICS; 6TH EUROPEAN CONFERENCE ON COMPUTATIONAL FLUID DYNAMICS, VOLS II - IV, 2014, :4239-4250
[39]   Dynamic behavior modeling of civil structures using Wavenets and Neural Networks: A comparative study [J].
Perez-Ramirez, C. A. ;
Amezquita-Sanchez, J. P. ;
Valtierra-Rodriguez, M. ;
Mejia-Barron, A. ;
Dominguez-Gonzalez, A. ;
Osornio-Rios, R. A. ;
Romero-Troncoso, R. J. .
2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONICS AND AUTOMOTIVE ENGINEERING (ICMEAE), 2014, :54-59
[40]   Dynamic modeling of a flexible beam with large overall motion and nonlinear deformation using the finite element method [J].
He Xing-Suo ;
Deng Feng-Yan ;
Wu Gen-Yong ;
Wang Rui .
ACTA PHYSICA SINICA, 2010, 59 (01) :25-29