Nonlinear dynamic modelling of flexible beam structures using neural networks

被引:0
|
作者
Hashim, SZM [1 ]
Tokhi, MO [1 ]
Darus, IZM [1 ]
机构
[1] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S1 3JD, S Yorkshire, England
来源
ICM '04: PROCEEDINGS OF THE IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS 2004 | 2004年
关键词
system identification; neural networks; flexible beam; non-linear system;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates the utilisation of back propagation neural networks (NNs) for modelling flexible beam structures in fixed-free mode; a simple repsentation of an aircraft wing or robot arm. A comparative performance of the NN model and conventional recursive least square scheme, in characterising the system is carried out in the time and frequency domains. Simulated results demonstrate that using NN approach the system is modelled better than with the conventional linear modelling approach. The developed neuro-modelling approach will further be utilized in the design and implementation of suitable controllers, for vibration suppression in such system.
引用
收藏
页码:171 / 175
页数:5
相关论文
共 50 条
  • [1] Dynamic Modelling of a Flexible Beam Structure Using Feedforward Neural Networks for Active Vibration Control
    Rahman, T. A. Z.
    As'arry, A.
    Jalil, N. A. Abdul
    Kamil, R.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE AND MECHANICAL ENGINEERING, 2019, 16 (01) : 6263 - 6280
  • [2] Dynamic modelling of a flexible beam structure using feedforward neural networks for active vibration control
    Rahman T.A.Z.
    As'arry A.
    Abdul Jalil N.A.
    Kamil R.
    International Journal of Automotive and Mechanical Engineering, 2019, 16 (01): : 6263 - 6280
  • [3] Nonlinear and direction-dependent dynamic process modelling using neural networks
    Turner, P
    Montague, G
    Morris, J
    IEE PROCEEDINGS-CONTROL THEORY AND APPLICATIONS, 1996, 143 (01): : 44 - 48
  • [4] Dynamic modelling of an automotive variable speed air conditioning system using nonlinear autoregressive exogenous neural networks
    Ng, Boon Chiang
    Darus, Intan Zaurah Mat
    Jamaluddin, Hishamuddin
    Kamar, Haslinda Mohamed
    APPLIED THERMAL ENGINEERING, 2014, 73 (01) : 1255 - 1269
  • [5] Dynamic neural networks with hybrid structures for nonlinear system identification
    Deng, Jiamei
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (01) : 281 - 292
  • [6] Adaptive control of nonlinear dynamic systems using θ-adaptive neural networks
    Yu, SH
    Annaswamy, AM
    AUTOMATICA, 1997, 33 (11) : 1975 - 1995
  • [7] Dynamic nonlinear modelling of power plant by physical principles and neural networks
    Lu, S
    Hogg, BW
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2000, 22 (01) : 67 - 78
  • [8] Modelling SER Biomass Gasification Using Dynamic Neural Networks
    Salah, Alia
    Hanel, Lutz
    Beirow, Marcel
    Scheffknecht, Guenter
    26TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING (ESCAPE), PT A, 2016, 38A : 19 - 24
  • [9] Modelling the dynamics of nonlinear partial differential equations using neural networks
    Smaoui, N
    Al-Enezi, S
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 170 (01) : 27 - 58
  • [10] Dynamic hysteresis modelling using feed-forward neural networks
    Makaveev, D
    Dupré, L
    De Wulf, M
    Melkebeek, J
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2003, 254 : 256 - 258