Application of expectation maximization clustering to transcription factor binding positions for cDNA microarray analysis

被引:0
|
作者
Chen, Chih-Yu [1 ,3 ]
Soo, Von-Wun [1 ,2 ]
Kuo, Chi-Li [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Comp Sci, Taipei, Taiwan
[2] Natl Univ Kaohsiung, Dept Comp Sci & Informat Engn, Kaohsiung, Taiwan
[3] Natl Hlth Res Ins, Div Biostat & Bioinformat, Miaoli, Taiwan
来源
SYSTEMS BIOLOGY AND REGULATORY GENOMICS | 2007年 / 4023卷
关键词
NF-KAPPA-B; GENE ACTIVATION; SP1; EXPRESSION; PROMOTER; NETWORKS; ELEMENTS; DATABASE; CELLS; P21;
D O I
暂无
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
We conduct the transcription factor (TF) analysis by detecting transcription factor pairs and incorporating binding positions for genes with altered expressions in time-series cDNA microarray data. Prediction of TF pairs that mostly likely contribute to the regulated transcription of differentially expressed genes are done through the computation of their expression coherence (EC). The Expectation Maximization (EM) clustering is performed additionally in order to detect patterns in specific TF binding positions. We evaluate the EC of expression profiles of genes within each cluster to discover binding trends that may play a significant role in regulation of target genes. Our method has successfully identified TF pairs that have a greater potential for regulating their target genes at specified locations rather than at arbitrary locations.
引用
收藏
页码:138 / +
页数:4
相关论文
共 50 条
  • [1] Sequential Integration of Fuzzy Clustering and Expectation Maximization for Transcription Factor Binding Site Identification
    Yousefian-Jazi, Ali
    Choi, Jinwook
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2018, 25 (11) : 1247 - 1256
  • [2] Clustering Microarray Time-series Data using Expectation Maximization and Multiple Profile Alignment
    Subhani, Numanul
    Rueda, Luis
    Ngom, Alioune
    Burden, Conrad J.
    BIBMW: 2009 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOP, 2009, : 1 - +
  • [3] Expectation-Maximization Approach to Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu.
    2011 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2011, : 559 - 566
  • [4] Boolean Factor Analysis by Expectation-Maximization Method
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Yu
    PROCEEDING OF THE THIRD INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN COMPUTER INTERACTION (IHCI 2011), 2013, 179 : 243 - 254
  • [5] An Expectation-Maximization algorithm for the Wishart mixture model: Application to movement clustering
    Hidot, Sullivan
    Saint-Jean, Christophe
    PATTERN RECOGNITION LETTERS, 2010, 31 (14) : 2318 - 2324
  • [6] Including transcription factor information in the superparamagnetic clustering of microarray data
    Monsivais-Alonso, M. P.
    Navarro-Munoz, J. C.
    Riego-Ruiz, L.
    Lopez-Sandoval, R.
    Rosu, H. C.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2010, 389 (24) : 5689 - 5697
  • [7] Bayesian clustering of transcription factor binding motifs
    Jensen, Shane T.
    Liu, Jun S.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (481) : 188 - 200
  • [8] Two Expectation-Maximization algorithms for Boolean Factor Analysis
    Frolov, Alexander A.
    Husek, Dusan
    Polyakov, Pavel Y.
    NEUROCOMPUTING, 2014, 130 : 83 - 97
  • [9] Clustering Analysis using Data Range Aware Seeding and Agglomerative Expectation Maximization
    Zhu, Hongwei
    Zhu, Honglei
    SITIS 2007: PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON SIGNAL IMAGE TECHNOLOGIES & INTERNET BASED SYSTEMS, 2008, : 904 - +
  • [10] Unraveling transcriptional regulatory programs by integrative analysis of microarray and transcription factor binding data
    Li, Huai
    Zhan, Ming
    BIOINFORMATICS, 2008, 24 (17) : 1874 - 1880