PRIMITIVE PERMUTATION REPRESENTATIONS OF PSL (3, p) AND ITS APPLICATIONS

被引:0
作者
Wang, Li [1 ,2 ]
Meng, Xianping [1 ,3 ]
Du, Shaofei [1 ,3 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo, Peoples R China
[3] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing, Peoples R China
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
Permutation group; Primitive group; Suborbit; Vertex transitive graph; VERTEX; GRAPHS; ORDER; EDGE; CLASSIFICATION; SUBGROUPS;
D O I
10.1080/00927872.2013.842243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result of this paper is a determination of the suborbits of primitive permutation representations of PSL (3, p) relative to a maximal subgroup PGL (2, p), where p equivalent to 13 (mod 24). As an application, a new family of 1/2-transitive graphs and semisymmetric graphs are obtained, respectively.
引用
收藏
页码:357 / 377
页数:21
相关论文
共 26 条
[1]   A CONSTRUCTION FOR VERTEX-TRANSITIVE GRAPHS [J].
ALSPACH, B ;
PARSONS, TD .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (02) :307-318
[2]   CONSTRUCTING GRAPHS WHICH ARE 1/2-TRANSITIVE [J].
ALSPACH, B ;
MARUSIC, D ;
NOWITZ, L .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1994, 56 :391-402
[3]   SUBGROUPS OF PSL(3,Q] FOR ODD Q [J].
BLOOM, DM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 127 (01) :150-&
[4]  
Bouwer I. Z., 1972, Journal of Combinatorial Theory, Series B, V12, P32, DOI 10.1016/0095-8956(72)90030-5
[5]   AN EDGE BUT NOT VERTEX TRANSITIVE CUBIC GRAPH [J].
BOUWER, IZ .
CANADIAN MATHEMATICAL BULLETIN, 1968, 11 (04) :533-&
[6]   VERTEX AND EDGE TRANSITIVE, BUT NOT 1-TRANSITIVE, GRAPHS [J].
BOUWER, IZ .
CANADIAN MATHEMATICAL BULLETIN, 1970, 13 (02) :231-&
[7]  
Dickson L. E., 1958, Linear groups: With an Exposition of the Galois Field theory
[8]  
Dixon J.D., 1996, Grad. Texts in Math., V163
[9]   A classification of semisymmetric graphs of order 2pq [J].
Du, SF ;
Xu, MY .
COMMUNICATIONS IN ALGEBRA, 2000, 28 (06) :2685-2715
[10]  
Du SF, 1999, J GRAPH THEOR, V32, P217, DOI 10.1002/(SICI)1097-0118(199911)32:3<217::AID-JGT1>3.0.CO