How does the electric current propagate through fully-hydrogenated borophene?

被引:33
作者
An, Yipeng [1 ,2 ,3 ]
Jiao, Jutao [1 ,2 ]
Hou, Yusheng [3 ]
Wang, Hui [3 ]
Wu, Dapeng [2 ,4 ]
Wang, Tianxing [1 ,2 ]
Fu, Zhaoming [1 ,2 ]
Xu, Guoliang [1 ,2 ]
Wu, Ruqian [3 ]
机构
[1] Henan Normal Univ, Coll Phys & Mat Sci, Xinxiang 453007, Peoples R China
[2] Henan Normal Univ, Int United Henan Key Lab Boron Chem & Adv Energy, Xinxiang 453007, Peoples R China
[3] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[4] Henan Normal Univ, Sch Chem & Chem Engn, Xinxiang 453007, Peoples R China
基金
中国国家自然科学基金;
关键词
GENERALIZED GRADIENT APPROXIMATION; ION BATTERIES; 1ST-PRINCIPLES; GRAPHENE; ANODE;
D O I
10.1039/c8cp04272a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We study the electronic transport properties of two-dimensional (2D) fully-hydrogenated borophene (namely, borophane), using density functional theory and non-equilibrium Green's function approaches. Borophane shows a perfect electrical transport anisotropy and is promising for applications. Along the peak- or equivalently the valley-parallel direction, 2D borophane exhibits a metallic characteristic and its current-voltage (I-V) curve shows a linear behavior, corresponding to the ON state in borophane-based nano-switches. In this case, electrons mainly propagate via the B-B bonds along the linear boron chains. In contrast, electron transmission is almost forbidden along the perpendicular buckled direction (i.e., the OFF state), due to its semi-conductor property. Our work demonstrates that 2D borophane could combine metal and semiconductor features and may be a promising candidate for nano-switching materials with a stable structure and high ON/OFF ratio.
引用
收藏
页码:21552 / 21556
页数:5
相关论文
共 22 条
[1]   Spin-dependent electronic transport properties of zigzag silicon carbon nanoribbon [J].
An, Yipeng ;
Zhang, Mengjun ;
Chen, Lipeng ;
Xia, Congxin ;
Wang, Tianxing ;
Fu, Zhaoming ;
Jiao, Zhaoyong ;
Xu, Guoliang .
RSC ADVANCES, 2015, 5 (129) :107136-107141
[2]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[3]   GENERALIZED MANY-CHANNEL CONDUCTANCE FORMULA WITH APPLICATION TO SMALL RINGS [J].
BUTTIKER, M ;
IMRY, Y ;
LANDAUER, R ;
PINHAS, S .
PHYSICAL REVIEW B, 1985, 31 (10) :6207-6215
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Anisotropic carrier mobility in two-dimensional materials with tilted Dirac cones: theory and application [J].
Cheng, Ting ;
Lang, Haifeng ;
Li, Zhenzhu ;
Liu, Zhongfan ;
Liu, Zhirong .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (35) :23942-23950
[6]  
Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/nchem.2491, 10.1038/NCHEM.2491]
[7]   Borophane as a Benchmate of Graphene: A Potential 2D Material for Anode of Li and Na-Ion Batteries [J].
Jena, Naresh K. ;
Araujo, Rafael B. ;
Shukla, Vivekanand ;
Ahuja, Rajeev .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (19) :16148-16158
[8]   Covalently bonded single-molecule junctions with stable and reversible photoswitched conductivity [J].
Jia, Chuancheng ;
Migliore, Agostino ;
Xin, Na ;
Huang, Shaoyun ;
Wang, Jinying ;
Yang, Qi ;
Wang, Shuopei ;
Chen, Hongliang ;
Wang, Duoming ;
Feng, Boyong ;
Liu, Zhirong ;
Zhang, Guangyu ;
Qu, Da-Hui ;
Tian, He ;
Ratner, Mark A. ;
Xu, H. Q. ;
Nitzan, Abraham ;
Guo, Xuefeng .
SCIENCE, 2016, 352 (6292) :1443-1445
[9]   Borophene and defective borophene as potential anchoring materials for lithium-sulfur batteries: a first-principles study [J].
Jiang, H. R. ;
Shyy, W. ;
Liu, M. ;
Ren, Y. X. ;
Zhao, T. S. .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (05) :2107-2114
[10]   Exploring the charge localization and band gap opening of borophene: a first-principles study [J].
Kistanov, Andrey A. ;
Cai, Yongqing ;
Zhou, Kun ;
Srikanth, Narasimalu ;
Dmitriev, Sergey V. ;
Zhang, Yong-Wei .
NANOSCALE, 2018, 10 (03) :1403-1410