Temperature and Mass Dispersion of Free Convective Radiative Non - Newtonian Nano Fluid Flow between Two Parallel Plates

被引:0
作者
Arpitha, R. [1 ]
Srikanth, D. [1 ]
机构
[1] Def Inst Adv Technol Deemed Be Univ, Dept Appl Math, Pune 411025, Maharashtra, India
关键词
Couple stress nanotluid; Brownian motion; Thermophoresis; Shooting method; Thermal radiation; COUPLE STRESS FLUID; NATURAL-CONVECTION; HEAT-TRANSFER; POROUS-MEDIUM; MAGNETIC-FIELD; COUETTE-FLOW; NANOFLUID; THERMOPHORESIS; HALL; MOTION;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the current study, impact of the thermal radiation along with thermophoretic diffusion and Brownian motion ramifications on the flow of non-Newtonian nanofluid represented by Couple stress fluid between horizontal parallel plates are discussed. Where the parallel plates are kept at various temperatures and concentrations, the fluid is periodically sucked and injected at the upper plate and lower plate respectively. The governing non-linear partial differential equations are reduced into a non-linear system of ordinary differential equations with the aid of similarity transformations. The resultant non-dimensional equations are subsequently solved by using shooting-method with the usual 4 ill order Runge-Kutta scheme. The non-dimensional velocity and temperature variations along with mass transfer profiles are analyzed for different fluid and parameters as well as geometric parameters and the same are plotted in the form of graphs. Skin- friction coefficient in non-dimensional along with heat & mass transfer rates are studied numerically. It is found that there is a direct relationship between temperature component of the fluid and the Brownian movement parameter, while the concentration component of the fluid is decreasing with respect to that of thermophoresis parameter. Further, mass transfer decreases with increasing couple stress fluid parameter.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 50 条