Live weight prediction of cattle using deep image regression

被引:3
作者
Ruchay, Alexey [1 ,2 ,3 ]
Dorofeev, Konstantin [1 ]
Kalschikov, Vsevolod [1 ]
Kolpakov, Vladimir [1 ]
Dzhulamanov, Kinispay [1 ]
Guo, Hao [4 ]
机构
[1] RAS, Fed Res Ctr Biol Syst & Agrotechnol, Orenburg, Russia
[2] Chelyabinsk State Univ, Chelyabinsk, Russia
[3] South Ural State Univ, Chelyabinsk, Russia
[4] China Agr Univ, Coll Land Sci & Technol, Beijing, Peoples R China
来源
2021 IEEE INTERNATIONAL WORKSHOP ON METROLOGY FOR AGRICULTURE AND FORESTRY (IEEE METROAGRIFOR 2021) | 2021年
基金
俄罗斯科学基金会;
关键词
Prediction; live weight; Hereford cattle; deep learning; image regression; BODY-WEIGHT;
D O I
10.1109/MetroAgriFor52389.2021.9628547
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The traditional linear regression algorithm is used to predict the live weight of livestock. However, this traditional method is inadequate for accurate prediction. Recently, a few researchers have successfully applied various machine learning algorithms for predicting the live body weight using livestock morphological measures. We investigate deep learning methods for developing a live weight prediction model based on image regression in this study. We use only RGB images and depth maps for predicting the live cattle weight. The best model for our study is the proposed model with MAPE 9.1 % using the RGB images and the depth maps. We have shown results on real-world datasets that demonstrate that the proposed model can reach levels of weight measurement accuracy comparable to those obtained by traditional weighting.
引用
收藏
页码:32 / 36
页数:5
相关论文
共 24 条
[1]  
[Anonymous], 2019, IOP C SERIES EARTH E, V341
[2]  
Chollet F., 2015, Keras
[3]   Prediction of Girolando cattle weight by means of body measurements extracted from images [J].
de Moraes Weber, Vanessa Apareclda ;
Weber, Fabricio de Lima ;
Gomes, Rodrigo da Costa ;
Oliveira Junior, Adair da Silva ;
Menezes, Geazy Vilharva ;
Pinto de Abreu, Urban Gomes ;
de Souza Belete, Nicolas Alessandro ;
Piston, Hemerson .
REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2020, 49
[4]   Machine learning algorithms for the prediction of conception success to a given insemination in lactating dairy cows [J].
Hempstalk, K. ;
McParland, S. ;
Berry, D. P. .
JOURNAL OF DAIRY SCIENCE, 2015, 98 (08) :5262-5273
[5]   Predicting the body weight of Balochi sheep using a machine learning approach [J].
Huma, Zil E. ;
Iqbal, Farhat .
TURKISH JOURNAL OF VETERINARY & ANIMAL SCIENCES, 2019, 43 (04) :500-506
[6]   A preliminarily study for predicting body weight and milk properties in lactating Holstein cows using a three-dimensional camera system [J].
Kuzuhara, Yukako ;
Kawamura, Kensuke ;
Yoshitoshi, Rena ;
Tamaki, Toru ;
Sugai, Shun ;
Ikegami, Mai ;
Kurokawa, Yuzo ;
Obitsu, Taketo ;
Okita, Miki ;
Sugino, Toshihisa ;
Yasuda, Taisuke .
COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 111 :186-193
[7]   Using 3D Imaging and Machine Learning to Predict Liveweight and Carcass Characteristics of Live Finishing Beef Cattle [J].
Miller, Gemma A. ;
Hyslop, James J. ;
Barclay, David ;
Edwards, Andrew ;
Thomson, William ;
Duthie, Carol-Anne .
FRONTIERS IN SUSTAINABLE FOOD SYSTEMS, 2019, 3
[8]   Machine learning application in growth and health prediction of broiler chickens [J].
Milosevic, B. ;
Ciric, S. ;
Lalic, N. ;
Milanovic, V. ;
Savic, Z. ;
Omerovic, I. ;
Doskovic, V. ;
Djordjevic, S. ;
Andjusic, L. .
WORLDS POULTRY SCIENCE JOURNAL, 2019, 75 (03) :401-410
[9]  
Pezzuolo A., 2018, SENSORS-BASEL, V18
[10]  
Pezzuolo A., 2020, NONCONTACT FEED WEIG, P170