Some results on the generalized Drazin inverse of operator matrices

被引:30
作者
Deng, Chunyuan [2 ]
Cvetkovic-Ilic, Dragana S. [3 ]
Wei, Yimin [1 ,4 ]
机构
[1] Fudan Univ, Sch Math Sci, Shanghai 200433, Peoples R China
[2] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
[3] Univ Nis, Dept Math, Fac Sci & Math, Nish 18000, Serbia
[4] Fudan Univ, Minist Educ, Key Lab Math Nonlinear Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
generalized Drazin inverse; Schur complement; block matrix; REPRESENTATIONS; CONTINUITY; INDEX;
D O I
10.1080/03081080902722642
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The generalized Drazin inverse M-d of a 2 x 2 operator matrix [GRAPHICS] is considered, where A is an element of B(X) and D is an element of B(Y) are generalized Drazin invertible. Expressions for the generalized Drazin inverse M-d of operator matrix M in terms of the individual blocks A, B, C, D, A(d) and D-d are derived under some conditions.
引用
收藏
页码:503 / 521
页数:19
相关论文
共 40 条
  • [1] [Anonymous], SINGULAR SYSTEMS DIF
  • [2] Ben-Israel A., 2003, Generalized inverses: theory and applications
  • [3] The generalized Schur complement in group inverses and (k+1)-potent matrices
    Benitez, Julio
    Thome, Nestor
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2006, 54 (06) : 405 - 413
  • [4] ON THE INDEX OF BLOCK UPPER-TRIANGULAR MATRICES
    BRU, R
    CLIMENT, JJ
    NEUMANN, M
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (02) : 436 - 447
  • [5] Campbell S.L., 1982, RECENT APPL GEN INVE
  • [6] Campbell S.L. V., 1980, Singular Systems of Differential Equations, V1
  • [7] Campbell S.T., 1983, Linear Multilinear Algebra, V14, P195, DOI DOI 10.1080/03081088308817556
  • [8] CONTINUITY PROPERTIES OF DRAZIN PSEUDOINVERSE
    CAMPBELL, SL
    MEYER, CD
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1975, 10 (01) : 77 - 83
  • [9] DRAZIN INVERSE OF AN INFINITE MATRIX
    CAMPBELL, SL
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1976, 31 (03) : 492 - 503
  • [10] CAMPBELL SL, 1979, GEN INVERSE LINEAR T