Elimination of infectious HIV DNA by CRISPR-Cas9

被引:27
|
作者
Das, Atze T. [1 ]
Binda, Caroline S. [1 ]
Berkhout, Ben [1 ]
机构
[1] Univ Amsterdam, Med Ctr, Dept Med Microbiol, Lab Expt Virol, NL-1105 AZ Amsterdam, Netherlands
关键词
RNA INTERFERENCE; GUIDE RNAS; GENOME; EXCISION; PROVIRUS; CRISPR/CAS9; ESCAPE; REPLICATION; SPECIFICITY; DISRUPTION;
D O I
10.1016/j.coviro.2019.07.001
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Current antiretroviral drugs can efficiently block HIV replication and prevent transmission, but do not target the HIV provirus residing in cells that constitute the viral reservoir. Because drug therapy interruption will cause viral rebound from this reservoir, HIV-infected individuals face lifelong treatment. Therefore, novel therapeutic strategies are being investigated that aim to permanently inactivate the proviral DNA, which may lead to a cure. Multiple studies showed that CRISPR-Cas9 genome editing can be used to attack HIV DNA. Here, we will focus on not only how this endonuclease attack can trigger HIV provirus inactivation, but also how virus escape occurs and this can be prevented.
引用
收藏
页码:81 / 88
页数:8
相关论文
共 50 条
  • [1] Combinatorial CRISPR-Cas9 and RNA Interference Attack on HIV-1 DNA and RNA Can Lead to Cross-Resistance
    Zhao, Na
    Wang, Gang
    Das, Atze T.
    Berkhout, Ben
    ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2017, 61 (12)
  • [2] A Combinatorial CRISPR-Cas9 Attack on HIV-1 DNA Extinguishes All Infectious Provirus in Infected T Cell Cultures
    Wang, Gang
    Zhao, Na
    Berkhout, Ben
    Das, Atze T.
    CELL REPORTS, 2016, 17 (11): : 2819 - 2826
  • [3] The Impact of HIV-1 Genetic Diversity on CRISPR-Cas9 Antiviral Activity and Viral Escape
    Darcis, Gilles
    Binda, Caroline S.
    Klaver, Bep
    Herrera-Carrillo, Elena
    Berkhout, Ben
    Das, Atze T.
    VIRUSES-BASEL, 2019, 11 (03):
  • [4] CRISPR-Cas9 Dual-gRNA Attack Causes Mutation, Excision and Inversion of the HIV-1 Proviral DNA
    Binda, Caroline S.
    Klaver, Bep
    Berkhout, Ben
    Das, Atze T.
    VIRUSES-BASEL, 2020, 12 (03):
  • [5] The MyLO CRISPR-Cas9 toolkit: a markerless yeast localization and overexpression CRISPR-Cas9 toolkit
    Bean, Bjorn D. M.
    Whiteway, Malcolm
    Martin, Vincent J. J.
    G3-GENES GENOMES GENETICS, 2022, 12 (08):
  • [6] Recent Progress in Regulating CRISPR-Cas9 System for Gene Editing
    Gong Shaohua
    Li Na
    Tang Bo
    ACTA CHIMICA SINICA, 2020, 78 (07) : 634 - 641
  • [7] Applications of CRISPR-Cas9 in The Prevention and Control of Viral Infectious Diseases
    Li Gen
    Liu Jun-Hua
    He Li-Jie
    Yin Xiu-Shan
    PROGRESS IN BIOCHEMISTRY AND BIOPHYSICS, 2018, 45 (10) : 1006 - 1025
  • [8] Energy biotechnology in the CRISPR-Cas9 era
    Estrela, Raissa
    Cate, Jamie Harrison Doudna
    CURRENT OPINION IN BIOTECHNOLOGY, 2016, 38 : 79 - 84
  • [9] Conformational control of DNA target cleavage by CRISPR-Cas9
    Sternberg, Samuel H.
    LaFrance, Benjamin
    Kaplan, Matias
    Doucina, Jennifer A.
    NATURE, 2015, 527 (7576) : 110 - 113
  • [10] Removal of Integrated Hepatitis B Virus DNA Using CRISPR-Cas9
    Li, Hao
    Sheng, Chunyu
    Wang, Shan
    Yang, Lang
    Liang, Yuan
    Huang, Yong
    Liu, Hongbo
    Li, Peng
    Yang, Chaojie
    Yang, Xiaoxia
    Jia, Leili
    Xie, Jing
    Wang, Ligui
    Hao, Rongzhang
    Du, Xinying
    Xu, Dongping
    Zhou, Jianjun
    Li, Mingzhen
    Sun, Yansong
    Tong, Yigang
    Li, Qiao
    Qiu, Shaofu
    Song, Hongbin
    FRONTIERS IN CELLULAR AND INFECTION MICROBIOLOGY, 2017, 7