Electrochemical Reforming of Glycerol in Alkaline PBI-Based PEM Reactor for Hydrogen Production

被引:19
作者
de Paula, Joanna [1 ]
Nascimento, Deborah [1 ]
Linares, Jose J. [1 ]
机构
[1] Univ Brasilia, Inst Quim, BR-70910900 Brasilia, DF, Brazil
来源
10TH ESEE: EUROPEAN SYMPOSIUM ON ELECTROCHEMICAL ENGINEERING | 2014年 / 41卷
关键词
ELECTROLYSIS CELL PEMEC; ELECTROCATALYTIC OXIDATION; FUEL-CELL; WATER SOLUTIONS; MEMBRANE; ETHANOL; GENERATION; ANODE;
D O I
10.3303/CET1441035
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One possible route for glycerol utilisation is through a reforming process in which clean hydrogen can be produced. This study presents the results of an Alkaline Membrane Electroreforming Reactor operated with KOH-doped polybenzimidazole (PBI). Commercial PtRu/C and Pt/C are used as catalysts for the anode and the cathode, respectively. The influence of two important operating variables, the temperature, and the composition of the cathode feed solution is studied. A significant enhancement in the cell performance is observed with the temperature until 90 degrees C. The highest efficiency for H-2 production (comparison with the amount predicted from Faraday's law) corresponds to a KOH concentration in the cathode feed solution of 2 mol L-1. Logically, higher current densities favours the amount of hydrogen produced and approaches the experimental values to the theoretical ones. Finally, the analyses of the product distribution show that more oxidized species can be obtained the higher the temperature and the current density, though the main products are C-3 organic acids, especially tartronic acid.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 17 条
[1]  
Bolat P., 2014, INT J HYDRO IN PRESS
[2]   From biomass to pure hydrogen: Electrochemical reforming of bio-ethanol in a PEM electrolyser [J].
Caravaca, A. ;
de Lucas-Consuegra, A. ;
Calcerrada, A. B. ;
Lobato, J. ;
Valverde, J. L. ;
Dorado, F. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 134 :302-309
[3]   Electrochemical reforming of ethanol-water solutions for pure H2 production in a PEM electrolysis cell [J].
Caravaca, A. ;
Sapountzi, F. M. ;
de Lucas-Consuegra, A. ;
Molina-Mora, C. ;
Dorado, F. ;
Valverde, J. L. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (12) :9504-9513
[4]   Hydrogen production from catalytic steam reforming of biodiesel byproduct glycerol: Issues and challenges [J].
Dou, Binlin ;
Song, Yongchen ;
Wang, Chao ;
Chen, Haisheng ;
Xu, Yujie .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2014, 30 :950-960
[5]   Alkali doped polybenzimidazole membrane for alkaline direct methanol fuel cell [J].
Hou, Hongying ;
Sun, Gongquan ;
He, Ronghuan ;
Sun, Baoying ;
Jin, Wei ;
Liu, He ;
Xin, Qin .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (23) :7172-7176
[6]   Electrochemical reforming of an acidic aqueous glycerol solution on Pt electrodes [J].
Kongjao, Sangkorn ;
Damronglerd, Somsak ;
Hunsom, Mali .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 2011, 41 (02) :215-222
[7]   Clean hydrogen generation through the electrocatalytic oxidation of ethanol in a Proton Exchange Membrane Electrolysis Cell (PEMEC): Effect of the nature and structure of the catalytic anode [J].
Lamy, Claude ;
Jaubert, Thomas ;
Baranton, Steve ;
Coutanceau, Christophe .
JOURNAL OF POWER SOURCES, 2014, 245 :927-936
[8]   Clean hydrogen generation through the electrocatalytic oxidation of formic acid in a Proton Exchange Membrane Electrolysis Cell (PEMEC) [J].
Lamy, Claude ;
Devadas, Abirami ;
Simoes, Mario ;
Coutanceau, Christophe .
ELECTROCHIMICA ACTA, 2012, 60 :112-120
[9]   Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells [J].
Linares, Jose J. ;
Rocha, Thairo A. ;
Zignani, Sabrina ;
Paganin, Valdecir A. ;
Gonzalez, Ernesto R. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (01) :620-630
[10]   Glycerol reforming in supercritical water; a short review [J].
Markocic, Elena ;
Kramberger, Boris ;
van Bennekom, Joost G. ;
Heeres, Hero Jan ;
Vos, John ;
Knez, Zeljko .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 23 :40-48