scReClassify: post hoc cell type classification of single-cell rNA-seq data

被引:20
作者
Kim, Taiyun [1 ,3 ]
Lo, Kitty [1 ,3 ]
Geddes, Thomas A. [1 ,3 ,4 ]
Kim, Hani Jieun [1 ,2 ,3 ]
Yang, Jean Yee Hwa [1 ,3 ]
Yang, Pengyi [1 ,2 ,3 ]
机构
[1] Univ Sydney, Fac Sci, Sch Math & Stat, Sydney, NSW 2006, Australia
[2] Univ Sydney, Fac Med & Hlth, Childrens Med Res Inst, Computat Syst Biol Grp, Sydney, NSW 2145, Australia
[3] Univ Sydney, Charles Perkins Ctr, Sydney, NSW 2006, Australia
[4] Univ Sydney, Fac Sci, Sch Life & Environm Sci, Sydney, NSW 2006, Australia
基金
澳大利亚国家健康与医学研究理事会; 澳大利亚研究理事会; 英国医学研究理事会;
关键词
Single-cell RNA-seq; scRNA-seq; Cell type classification; Class label noise; EXPRESSION; ATLAS;
D O I
10.1186/s12864-019-6305-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Single-cell RNA-sequencing (scRNA-seq) is a fast emerging technology allowing global transcriptome profiling on the single cell level. Cell type identification from scRNA-seq data is a critical task in a variety of research such as developmental biology, cell reprogramming, and cancers. Typically, cell type identification relies on human inspection using a combination of prior biological knowledge (e.g. marker genes and morphology) and computational techniques (e.g. PCA and clustering). Due to the incompleteness of our current knowledge and the subjectivity involved in this process, a small amount of cells may be subject to mislabelling. Results: Here, we propose a semi-supervised learning framework, named scReClassify, for 'post hoc' cell type identification from scRNA-seq datasets. Starting from an initial cell type annotation with potentially mislabelled cells, scReClassify first performs dimension reduction using PCA and next applies a semi-supervised learning method to learn and subsequently reclassify cells that are likely mislabelled initially to the most probable cell types. By using both simulated and real-world experimental datasets that profiled various tissues and biological systems, we demonstrate that scReClassify is able to accurately identify and reclassify misclassified cells to their correct cell types. Conclusions: scReClassify can be used for scRNA-seq data as a post hoc cell type classification tool to fine-tune cell type annotations generated by any cell type classification procedure. It is implemented as an R package and is freely available from https://github.com/SydneyBioX/scReClassify
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Improving replicability in single-cell RNA-Seq cell type discovery with Dune
    de Bezieux, Hector Roux
    Street, Kelly
    Fischer, Stephan
    Van den Berge, Koen
    Chance, Rebecca
    Risso, Davide
    Gillis, Jesse
    Ngai, John
    Purdom, Elizabeth
    Dudoit, Sandrine
    [J]. BMC BIOINFORMATICS, 2024, 25 (01):
  • [22] The contribution of cell cycle to heterogeneity in single-cell RNA-seq data Reply
    不详
    [J]. NATURE BIOTECHNOLOGY, 2016, 34 (06) : 593 - 595
  • [23] Benchmarking algorithms for pathway activity transformation of single-cell RNA-seq data
    Zhang, Yaru
    Ma, Yunlong
    Huang, Yukuan
    Zhang, Yan
    Jiang, Qi
    Zhou, Meng
    Su, Jianzhong
    [J]. COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2020, 18 : 2953 - 2961
  • [24] Consensus clustering of single-cell RNA-seq data by enhancing network affinity
    Cui, Yaxuan
    Zhang, Shaoqiang
    Liang, Ying
    Wang, Xiangyun
    Ferraro, Thomas N.
    Chen, Yong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [25] spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
    Sungwoo Bae
    Hongyoon Choi
    Dong Soo Lee
    [J]. Genome Medicine, 15
  • [26] spSeudoMap: cell type mapping of spatial transcriptomics using unmatched single-cell RNA-seq data
    Bae, Sungwoo
    Choi, Hongyoon
    Lee, Dong Soo
    [J]. GENOME MEDICINE, 2023, 15 (01)
  • [27] Evaluation of tools for highly variable gene discovery from single-cell RNA-seq data
    Yip, Shun H.
    Sham, Pak Chung
    Wang, Junwen
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (04) : 1583 - 1589
  • [28] Yeast Single-cell RNA-seq, Cell by Cell and Step by Step
    Nadal-Ribelles, Mariona
    Islam, Saiful
    Wei, Wu
    Latorre, Pablo
    Nguyen, Michelle
    de Nadal, Eulalia
    Posas, Francesc
    Steinmetz, Lars M.
    [J]. BIO-PROTOCOL, 2019, 9 (17):
  • [29] Tracking intratumoral heterogeneity in glioblastoma via regularized classification of single-cell RNA-Seq data
    Lopes, Marta B.
    Vinga, Susana
    [J]. BMC BIOINFORMATICS, 2020, 21 (01)
  • [30] A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data
    Xiang, Ruizhi
    Wang, Wencan
    Yang, Lei
    Wang, Shiyuan
    Xu, Chaohan
    Chen, Xiaowen
    [J]. FRONTIERS IN GENETICS, 2021, 12