On the strong convergence of the optimal linear shrinkage estimator for large dimensional covariance matrix

被引:32
作者
Bodnar, Taras [1 ]
Gupta, Arjun K. [2 ]
Parolya, Nestor [3 ]
机构
[1] Humboldt Univ, Dept Math, D-10099 Berlin, Germany
[2] Bowling Green State Univ, Dept Math & Stat, Bowling Green, OH 43403 USA
[3] Leibniz Univ Hannover, Inst Empir Finance Econometr, D-30167 Hannover, Germany
关键词
Large-dimensional asymptotics; Random matrix theory; Covariance matrix estimation; LIMITING SPECTRAL DISTRIBUTION; EMPIRICAL DISTRIBUTION; FACTOR MODELS; EIGENVALUES;
D O I
10.1016/j.jmva.2014.08.006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this work we construct an optimal linear shrinkage estimator for the covariance matrix in high dimensions. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The developed distribution-free estimators obey almost surely the smallest Frobenius loss over all linear shrinkage estimators for the covariance matrix. The case we consider includes the number of variables p -> infinity and the sample size n -> infinity so that p/n -> c is an element of (0, +infinity). Additionally, we prove that the Frobenius norm of the sample covariance matrix tends almost surely to a deterministic quantity which can be consistently estimated. Published by Elsevier Inc.
引用
收藏
页码:215 / 228
页数:14
相关论文
共 29 条
[1]  
[Anonymous], 2010, SPRINGER SER STAT
[2]   Inferential theory for factor models of large dimensions. [J].
Bai, J .
ECONOMETRICA, 2003, 71 (01) :135-171
[3]   Determining the number of factors in approximate factor models [J].
Bai, JS ;
Ng, S .
ECONOMETRICA, 2002, 70 (01) :191-221
[4]  
Bai JS, 2011, ANN ECON FINANC, V12, P199
[5]   On asymptotics of eigenvectors of large sample covariance matrix [J].
Bai, Z. D. ;
Miao, B. Q. ;
Pan, G. M. .
ANNALS OF PROBABILITY, 2007, 35 (04) :1532-1572
[6]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[7]  
Cai T., 2011, FRONTIERS STAT, V2
[8]   MINIMAX ESTIMATION OF LARGE COVARIANCE MATRICES UNDER l1-NORM [J].
Cai, T. Tony ;
Zhou, Harrison H. .
STATISTICA SINICA, 2012, 22 (04) :1375-1378
[9]   ADAPTIVE COVARIANCE MATRIX ESTIMATION THROUGH BLOCK THRESHOLDING [J].
Cai, Tony ;
Yuan, Ming .
ANNALS OF STATISTICS, 2012, 40 (04) :2014-2042
[10]   A Constrained l1 Minimization Approach to Sparse Precision Matrix Estimation [J].
Cai, Tony ;
Liu, Weidong ;
Luo, Xi .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2011, 106 (494) :594-607