Method of Musical Composition for the Portfolio Optimization Problem

被引:0
作者
Anselmo Mora-Gutierrez, Roman [1 ,2 ]
Ponsich, Antonin [1 ,2 ]
Rincon Garcia, Eric Alfredo [1 ,2 ]
Gerardo de-los-Cobos-Silva, Sergio [1 ,2 ]
Gutierrez Andrade, Miguel Angel [1 ,2 ]
Lara-Velazquez, Pedro [1 ,2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Sistemas, Unidad Azcapotzalco, Mexico City 02200, DF, Mexico
[2] Univ Autonoma Metropolitana, Dept Ingn Elect, Unidad Iztapalapa, Mexico City 09340, DF, Mexico
来源
ADVANCES IN SOFT COMPUTING, MICAI 2016, PT II | 2017年 / 10062卷
关键词
Method of Musical Composition; Portfolio optimization; Markowitz model; ALGORITHM; SELECTION;
D O I
10.1007/978-3-319-62428-0_29
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The constrained portfolio optimization problem with multi-objective functions cannot be efficiently solved using exact techniques. Thus, heuristics approaches seem to be the best option to find high quality solutions in a limited amount of time. For solving this problem, this paper proposes an algorithm based on the Method of Musical Composition (MMC), a metaheuristic that mimics an multi-agent based creativity system associated with musical composition. In order to prove its performance, the algorithm was tested over five well-known benchmark data sets and the obtained results prove to be highly competitive since they outperform those reported in the specialized literature in four out of the five tackled instances.
引用
收藏
页码:365 / 376
页数:12
相关论文
共 20 条
  • [1] Adaptation of the musical composition method for solving constrained optimization problems
    Anselmo Mora-Gutierrez, Roman
    Ramirez-Rodriguez, Javier
    Alfredo Rincon-Garcia, Eric
    Ponsich, Antonin
    Herrera, Oscar
    Lara-Velazquez, Pedro
    [J]. SOFT COMPUTING, 2014, 18 (10) : 1931 - 1948
  • [2] An optimization algorithm inspired by musical composition
    Anselmo Mora-Gutierrez, Roman
    Ramirez-Rodriguez, Javier
    Alfredo Rincon-Garcia, Eric
    [J]. ARTIFICIAL INTELLIGENCE REVIEW, 2014, 41 (03) : 301 - 315
  • [3] An optimization algorithm inspired by social creativity systems
    Anselmo Mora-Gutierrez, Roman
    Ramirez-Rodriguez, Javier
    Alfredo Rincon-Garcia, Eric
    Ponsich, Antonin
    Herrera, Oscar
    [J]. COMPUTING, 2012, 94 (11) : 887 - 914
  • [4] Birattari M., 2009, Tuning Metaheuristics: A Machine Learning Perspective, V197, DOI DOI 10.1007/978-3-642-00483-4
  • [5] Heuristics for cardinality constrained portfolio optimisation
    Chang, TJ
    Meade, N
    Beasley, JE
    Sharaiha, YM
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2000, 27 (13) : 1271 - 1302
  • [6] Portfolio optimization through Kriging methods
    da Barrosa, Marcelo Rosario
    Salles, Arthur Valle
    Ribeiro, Celma de Oliveira
    [J]. APPLIED ECONOMICS, 2016, 48 (50) : 4894 - 4905
  • [7] Markowitz-based portfolio selection with cardinality constraints using improved particle swarm optimization
    Deng, Guang-Feng
    Lin, Woo-Tsong
    Lo, Chih-Chung
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (04) : 4558 - 4566
  • [8] OPTIMAL CONTROL OF MARKOVIAN SWITCHING SYSTEMS WITH APPLICATIONS TO PORTFOLIO DECISIONS UNDER INFLATION
    Fei, Chen
    Fei, Weiyin
    [J]. ACTA MATHEMATICA SCIENTIA, 2015, 35 (02) : 439 - 458
  • [9] Portfolio selection using neural networks
    Fernandez, Alberto
    Gomez, Sergio
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2007, 34 (04) : 1177 - 1191
  • [10] Sparse tangent portfolio selection via semi-definite relaxation
    Kim, Min Jeong
    Lee, Yongjae
    Kim, Jang Ho
    Kim, Woo Chang
    [J]. OPERATIONS RESEARCH LETTERS, 2016, 44 (04) : 540 - 543