Semi-supervised feature selection via multiobjective optimization

被引:0
|
作者
Handl, Julia [1 ]
Knowles, Joshua [1 ]
机构
[1] Univ Manchester, Manchester Interdisciplinary Bioctr, Manchester, Lancs, England
来源
2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10 | 2006年
基金
英国生物技术与生命科学研究理事会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In previous work, we have shown that both unsupervised feature selection and the semi-supervised clustering problem can be usefully formulated as multiobjective optimization problems. In this paper, we discuss the logical extension of this prior work to cover the problem of semi-supervised feature selection. Our extensive experimental results provide evidence for the advantages of semi-supervised feature selection when both labelled and unlabelled data are available. Moreover, the particular effectiveness of a Pareto-based optimization approach can also be seen.
引用
收藏
页码:3319 / +
页数:2
相关论文
共 50 条
  • [1] Feature selection and semi-supervised clustering using multiobjective optimization
    Saha, Sriparna
    Ekbal, Asif
    Alok, Abhay Kumar
    Spandana, Rachamadugu
    SPRINGERPLUS, 2014, 3
  • [2] Feature Selection and Semi-supervised Clustering Using Multiobjective Optimization
    Alok, Abhay Kumar
    Saha, Sriparna
    Ekbal, Asif
    2014 INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE ISCMI 2014, 2014, : 126 - 129
  • [3] On semi-supervised clustering via multiobjective optimization
    Handl, Julia
    Knowles, Joshua
    GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2, 2006, : 1465 - +
  • [4] Semi-supervised Feature Selection via Spectral Analysis
    Zhao, Zheng
    Liu, Huan
    PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 641 - 646
  • [5] Feature Selection and Model Optimization for Semi-supervised Speaker Spotting
    Chetupalli, Srikanth Raj
    Gopalakrishnan, Anand
    Sreenivas, Thippur V.
    2016 24TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2016, : 135 - 139
  • [6] Discriminative Semi-Supervised Feature Selection Via Manifold Regularization
    Xu, Zenglin
    King, Irwin
    Lyu, Michael Rung-Tsong
    Jin, Rong
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2010, 21 (07): : 1033 - 1047
  • [7] Semi-supervised Feature Selection via Rescaled Linear Regression
    Chen, Xiaojun
    Nie, Feiping
    Yuan, Guowen
    Huang, Joshua Zhexue
    PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 1525 - 1531
  • [8] Simultaneous feature selection and classification via semi-supervised models
    Yang, Liming
    Wang, Laisheng
    ICNC 2007: THIRD INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 1, PROCEEDINGS, 2007, : 646 - +
  • [9] Discriminative Semi-Supervised Feature Selection via Manifold Regularization
    Xu, Zenglin
    Jin, Rong
    Lyu, Michael R.
    King, Irwin
    21ST INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-09), PROCEEDINGS, 2009, : 1303 - 1308
  • [10] Forward semi-supervised feature selection
    Ren, Jiangtao
    Qiu, Zhengyuan
    Fan, Wei
    Cheng, Hong
    Yu, Philip S.
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2008, 5012 : 970 - +