A transcriptomics data-driven gene space accurately predicts liver cytopathology and drug-induced liver injury

被引:86
作者
Kohonen, Pekka [1 ]
Parkkinen, Juuso A. [2 ]
Willighagen, Egon L. [1 ,3 ]
Ceder, Rebecca [1 ]
Wennerberg, Krister [4 ]
Kaski, Samuel [2 ,5 ]
Grafstrom, Roland C. [1 ]
机构
[1] Karolinska Inst, Inst Environm Med, Nobels Vag 13,Box 210, SE-17177 Stockholm, Sweden
[2] Aalto Univ, Dept Comp Sci, Helsinki Inst Informat Technol HIIT, Konemiehentie 2,POB 15400, Aalto, Finland
[3] Maastricht Univ, Dept Bioinformat BiGCaT, Univ Single 50,POB 616,UNS 50 Box19, NL-6200 MD Maastricht, Netherlands
[4] Univ Helsinki, Inst Mol Med Finland FIMM, Tukholmankatu 8,POB 20, FI-00014 Helsinki, Finland
[5] Univ Helsinki, Dept Comp Sci, Helsinki Inst Informat Technol, Gustaf Hallstromin Katu 2b,POB 68, FI-00014 Helsinki, Finland
基金
芬兰科学院; 瑞典研究理事会;
关键词
SMALL MOLECULES; RISK-ASSESSMENT; TOXICITY; TOXICOLOGY; PACKAGE; PHARMACOLOGY; PROFILES; PARADIGM; PATHWAYS; HUMANS;
D O I
10.1038/ncomms15932
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and costly task. Here we utilize a 'big data compacting and data fusion'-concept to capture diverse adverse outcomes on cellular and organismal levels. The approach generates from transcriptomics data set a 'predictive toxicogenomics space' (PTGS) tool composed of 1,331 genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving similar to 2.5 x 10(8) data points and 1,300 compounds to construct and validate the PTGS, the tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity probability estimate intrinsic to omics data, predict chemically-induced pathological states in liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of DILI prediction accuracy.
引用
收藏
页数:15
相关论文
共 79 条
[1]   Human Drug-Induced Liver Injury Severity Is Highly Associated With Dual Inhibition of Liver Mitochondrial Function and Bile Salt Export Pump [J].
Aleo, Michael D. ;
Luo, Yi ;
Swiss, Rachel ;
Bonin, Paul D. ;
Potter, David M. ;
Will, Yvonne .
HEPATOLOGY, 2014, 60 (03) :1015-1022
[2]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[3]   Developing tools for defining and establishing pathways of toxicity [J].
Andersen, Melvin E. ;
McMullen, Patrick D. ;
Krewski, Daniel .
ARCHIVES OF TOXICOLOGY, 2015, 89 (05) :809-812
[4]   Key Challenges and Opportunities Associated with the Use of In Vitro Models to Detect Human DILI: Integrated Risk Assessment and Mitigation Plans [J].
Atienzar, Franck A. ;
Blomme, Eric A. ;
Chen, Minjun ;
Hewitt, Philip ;
Kenna, J. Gerry ;
Labbe, Gilles ;
Moulin, Frederic ;
Pognan, Francois ;
Roth, Adrian B. ;
Suter-Dick, Laura ;
Ukairo, Okechukwu ;
Weaver, Richard J. ;
Will, Yvonne ;
Dambach, Donna M. .
BIOMED RESEARCH INTERNATIONAL, 2016, 2016
[5]   Systems Pharmacology to Predict Drug Toxicity: Integration Across Levels of Biological Organization [J].
Bai, Jane P. F. ;
Abernethy, Darrell R. .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, VOL 53, 2013, 2013, 53 :451-473
[6]   Integrating Publicly Available Data to Generate Computationally Predicted Adverse Outcome Pathways for Fatty Liver [J].
Bell, Shannon M. ;
Angrish, Michelle M. ;
Wood, Charles E. ;
Edwards, Stephen W. .
TOXICOLOGICAL SCIENCES, 2016, 150 (02) :510-520
[7]  
Bengtsson H., 2008, aroma. affymetrix: A generic framework in R for analyzing small to very large Affymetrix data sets in bounded memory
[8]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[9]   Probabilistic retrieval and visualization of biologically relevant microarray experiments [J].
Caldas, Jose ;
Gehlenborg, Nils ;
Faisal, Ali ;
Brazma, Alvis ;
Kaski, Samuel .
BIOINFORMATICS, 2009, 25 (12) :I145-I153
[10]   The Liver Toxicity Knowledge Base: A Systems Approach to a Complex End Point [J].
Chen, M. ;
Zhang, J. ;
Wang, Y. ;
Liu, Z. ;
Kelly, R. ;
Zhou, G. ;
Fang, H. ;
Borlak, J. ;
Tong, W. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2013, 93 (05) :409-412