Resolutions of orthogonal and symplectic analogues of determinantal ideals

被引:3
作者
Lovett, Stephen [1 ]
机构
[1] Eastern Nazarene Coll, Dept Math & Comp Sci, Quincy, MA 02170 USA
关键词
linear groups; nilpotent orbits; determinantal varieties; resolutions; Cohen-Macaulay; Gorenstein; Gorenstein of codimension 4;
D O I
10.1016/j.jalgebra.2006.10.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider orthogonal and symplectic analogues of determinantal varieties (O) over bar (r1,r2). Such varieties simultaneously generalize usual determinantal varieties and rank varieties of symmetric or anti-symmetric matrices. We find (non-minimal) resolutions of the coordinate rings of the varieties (O) over bar (r1,r2). We determine that "nearly all" such varieties are Cohen-Macaulay and for those that are Cohen-Macaulay we calculate the type. Furthermore, we provide a simple characterization for which varieties (O) over bar (r1,r2) are Gorenstein. As an application, we present a class of ideals in k[Hom(E, F)] that are Gorenstein of codimension 4. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:282 / 298
页数:17
相关论文
共 11 条
[1]  
[Anonymous], 1993, CAMBRIDGE STUDIES AD
[2]  
EISENUBD D, 1995, GRAD TEXTS MATH, V150
[3]  
FULTON W., 1991, GRAD TEXTS MATH, V129
[4]  
JOZEFIAK T, 1981, ASTERISQUE, P109
[5]   SOME REMARKS ON NILPOTENT ORBITS [J].
KAC, VG .
JOURNAL OF ALGEBRA, 1980, 64 (01) :190-213
[6]   YOUNG-DIAGRAMMATIC METHODS FOR THE REPRESENTATION-THEORY OF THE CLASSICAL-GROUPS OF TYPE BN, CN, DN [J].
KOIKE, K ;
TERADA, I .
JOURNAL OF ALGEBRA, 1987, 107 (02) :466-511
[7]   CLASSIFICATION OF THE TOR-ALGEBRAS OF CODIMENSION-4 GORENSTEIN LOCAL-RINGS [J].
KUSTIN, AR ;
MILLER, M .
MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (03) :341-355
[8]   SYZYGIES OF DETERMINANT VARIETIES [J].
LASCOUX, A .
ADVANCES IN MATHEMATICS, 1978, 30 (03) :202-237
[9]   Orthogonal and symplectic analogues of determinantal ideals [J].
Lovett, S .
JOURNAL OF ALGEBRA, 2005, 291 (02) :416-456
[10]  
MACDONALD I, 1999, SYMMETRIC FUNCTIONS