Interface features between 30Li2O•47.5V2O5•22.5B2O3 glassy cathode and Li7La3Zr2O12 solid electrolyte

被引:7
作者
Il'ina, E. A. [1 ]
Druzhinin, K., V [1 ,2 ]
Saetova, N. S. [1 ]
Antonov, B. D. [1 ]
Pryakhina, V., I [2 ]
机构
[1] RAS, Ural Branch, Inst High Temp Electrochem, Akad Skaya St 20, Ekaterinburg 620137, Russia
[2] Ural Fed Univ, Mira St 19, Ekaterinburg 620002, Russia
关键词
Li7La3Zr2O12; Solid electrolyte; Glassy cathode; All-solid-state battery; XPS analysis; LI-ION CONDUCTORS; LITHIUM BATTERIES; STATE BATTERY; CONDUCTIVITY; FABRICATION; OXIDE;
D O I
10.1016/j.electacta.2018.08.008
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Glassy cathode deposition on solid electrolyte substrate applied to lithium middle-temperature all-solid-state batteries was investigated. The 30Li(2)O center dot 47.5V(2)O(5)center dot 22.5B(2)O(3) (LBV) glassy cathode is crystallized on Li7La3Zr2O12 (LLZ) solid electrolyte substrate at various temperatures (650-850 degrees C) and holding times (0.5-5 min). The phase composition of the crystallized glass and vanadium oxidation state are determined by the XRD and XPS analysis. The different lithium vanadates form at all studied temperatures, and the boron-containing phases appear at temperatures greater than 750 degrees C. SEM investigation shows that the lithium borate-vanadate glass crystallized at 750 degrees C to create the optimal interface and close contact between the electrode and the electrolyte. Processing at lower temperatures does not allow for good contact, and processing at higher temperatures leads to the interaction between the cathode material and ceramic electrolyte. The optimal mode of 30Li(2)O center dot 47.5V(2)O(5)center dot 22.5B(2)O(3) glassy cathode deposition on the substrate is found to be glass powder annealing for 0.5 min at 750 degrees C. This LBV vertical bar LLZ cell has the highest conductivity and the lowest polarization resistance on the cathode vertical bar electrolyte interface. The universality of this deposition mode is demonstrated using Li3.65Al0.05Ge0.95P0.2O4 ceramic substrate as an example. Thus, the LBV glass can be used for the formation of an optimal interface with other lithium-ion solid electrolytes. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:326 / 335
页数:10
相关论文
共 49 条
[1]   New High Capacity Cathode Materials for Rechargeable Li-ion Batteries: Vanadate-Borate Glasses [J].
Afyon, Semih ;
Krumeich, Frank ;
Mensing, Christian ;
Borgschulte, Andreas ;
Nesper, Reinhard .
SCIENTIFIC REPORTS, 2014, 4
[2]   Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure [J].
Awaka, Junji ;
Kijima, Norihito ;
Hayakawa, Hiroshi ;
Akimoto, Junji .
JOURNAL OF SOLID STATE CHEMISTRY, 2009, 182 (08) :2046-2052
[3]   The interfacial behaviours of all-solid-state lithium ion batteries [J].
Bai, Lixiong ;
Xue, Wendong ;
Li, Yan ;
Liu, Xiaoguang ;
Li, Yong ;
Sun, Jialin .
CERAMICS INTERNATIONAL, 2018, 44 (07) :7319-7328
[4]   The surface behaviour of an Al-Li7La3Zr2O12 solid electrolyte [J].
Bai, Lixiong ;
Xue, Wendong ;
Li, Yan ;
Liu, Xiaoguang ;
Li, Yong ;
Sun, Jialin .
CERAMICS INTERNATIONAL, 2017, 43 (17) :15805-15810
[5]   Ac and dc conductivities in V2O5-P2O5 glasses containing alkaline ions [J].
Barczynski, R. J. ;
Krol, P. ;
Murawski, L. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2010, 356 (37-40) :1965-1967
[6]  
Burmakin E. I., 2006, ELECTROCHEM ENERGY, V6, P192
[7]   Nanostructured Garnet-type Li7La3Zr2O12: Synthesis, Properties, and Opportunities as Electrolytes for Li-ion Batteries [J].
Chan, Candace K. ;
Yang, Ting ;
Weller, J. Mark .
ELECTROCHIMICA ACTA, 2017, 253 :268-280
[8]   Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte [J].
Cheng, Samson Ho-Sum ;
He, Kang-Qiang ;
Liu, Ying ;
Zha, Jun-Wei ;
Kamruzzaman, Md ;
Ma, Robin Lok-Wang ;
Dang, Zhi-Min ;
Li, Robert K. Y. ;
Chung, C. Y. .
ELECTROCHIMICA ACTA, 2017, 253 :430-438
[9]   Crystal Chemistry and Stability of "Li7La3Zr2O12" Garnet: A Fast Lithium-Ion Conductor [J].
Geiger, Charles A. ;
Alekseev, Evgeny ;
Lazic, Biljana ;
Fisch, Martin ;
Armbruster, Thomas ;
Langner, Ramona ;
Fechtelkord, Michael ;
Kim, Namjun ;
Pettke, Thomas ;
Weppner, Werner .
INORGANIC CHEMISTRY, 2011, 50 (03) :1089-1097
[10]  
Han XG, 2017, NAT MATER, V16, P572, DOI [10.1038/nmat4821, 10.1038/NMAT4821]