Positive Observer Design for Fractional Order Systems

被引:0
作者
Shafai, B. [1 ]
Oghbaee, A. [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
来源
2014 WORLD AUTOMATION CONGRESS (WAC): EMERGING TECHNOLOGIES FOR A NEW PARADIGM IN SYSTEM OF SYSTEMS ENGINEERING | 2014年
关键词
LTR DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper initially starts with an overview of fractional order representation of linear continuous-time systems and their stability analysis. The design of fractional order observers for fractional order system (FOS) is considered with the purpose of estimating the system states in feedback implementation. Using the stability conditions for FOS, design procedures for both fractional order observer of proportional and proportional integral types (P-alpha Observer and PI alpha Observer) are given with the aim of generalizing the conventional P- and PI-Observers. Finally, the problem of positive P-alpha-Observer design for positive FOS is formulated and solved using linear programming. The possibility of incorporating P-alpha-Observer and state feedback control law is also addressed for stabilization of FOS.
引用
收藏
页数:6
相关论文
共 38 条
[11]  
Kaczorek T, 2011, LECT NOTES CONTR INF, V411, P1, DOI 10.1007/978-3-642-20502-6
[12]  
Lorenzo Carl F., 2008, ASME J COMPUTATIONAL, V3
[13]   On the fractional signals and systems [J].
Magin, Richard ;
Ortigueira, Manuel D. ;
Podlubny, Igor ;
Trujillo, Juan .
SIGNAL PROCESSING, 2011, 91 (03) :350-371
[14]  
Matignon D., 1996, Comput. Eng. Syst. Appl, V2, P963
[15]  
Monje CA, 2010, ADV IND CONTROL, P3, DOI 10.1007/978-1-84996-335-0
[16]   Identifiability of fractional order systems using input output frequency contents [J].
Nazarian, Peyman ;
Haeri, Mohammad ;
Tavazoei, Mohammad Saleh .
ISA TRANSACTIONS, 2010, 49 (02) :207-214
[17]   LTR DESIGN OF PROPORTIONAL-INTEGRAL OBSERVERS [J].
NIEMANN, HH ;
STOUSTRUP, J ;
SHAFAI, B ;
BEALE, S .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 1995, 5 (07) :671-693
[18]  
Oldham K.B., 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[19]  
Oustaloup A., 1995, La Derivation Non Entiere
[20]  
Petras I., 2009, Fractional Calculus Applied Analysis, V12, P269