Measurements of downwelling far-infrared radiance during the RHUBC-II campaign at Cerro Toco, Chile and comparisons with line-by-line radiative transfer calculations

被引:6
作者
Mast, Jeffrey C. [1 ]
Mlynczak, Martin G. [2 ]
Cageao, Richard P. [3 ]
Kratz, David P. [2 ]
Latvakoski, Harri [4 ]
Johnson, David G. [3 ]
Turner, David D. [5 ]
Mlawer, Eli J. [6 ]
机构
[1] Sci Syst & Applicat Inc, 1 Enterprise Pkwy, Hampton, VA 23666 USA
[2] NASA, Langley Res Ctr, Climate Sci Branch, Mail Stop 420, Hampton, VA 23681 USA
[3] NASA, Langley Res Ctr, Remote Sensing Branch, Mail Stop 468, Hampton, VA 23681 USA
[4] Space Dynam Lab, 1695 Res Pk Way, Logan, UT 84341 USA
[5] NOAA, Global Syst Div, Earth Syst Res Lab, 325 Broadway, Boulder, CO 80305 USA
[6] Atmospher & Environm Res, Lexington, MA USA
关键词
Far-infrared; Spectral radiance; Water vapor; Greenhouse effect; WATER-VAPOR CONTINUUM; SPECTROSCOPY; INSTRUMENT; CALIBRATION; CLOUDS;
D O I
10.1016/j.jqsrt.2017.04.028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Downwelling radiances at the Earth's surface measured by the Far-Infrared Spectroscopy of the Troposphere (FIRST) instrument in an environment with integrated precipitable water (IPW) as low as 0.03 cm are compared with calculated spectra in the far-infrared and mid-infrared. FIRST (a Fourier transform spectrometer) was deployed from August through October 2009 at 5.38 km MSL on Cerro Toco, a mountain in the Atacama Desert of Chile. There FIRST took part in the Radiative Heating in Unexplored Bands Campaign Part 2 (RHUBC-II), the goal of which is the assessment of water vapor spectroscopy. Radiosonde water vapor and temperature vertical profiles are input into the Atmospheric and Environmental Research (AER) Line-by-Line Radiative Transfer Model (LBLRTM) to compute modeled radiances. The LBLRTM minus FIRST residual spectrum is calculated to assess agreement. Uncertainties (1-sigma) in both the measured and modeled radiances are also determined. Measured and modeled radiances nearly all agree to within combined (total) uncertainties. Features exceeding uncertainties can be corrected into the combined uncertainty by increasing water vapor and model continuum absorption, however this may not be necessary due to 1-sigma uncertainties (68% confidence). Furthermore, the uncertainty in the measurement-model residual is very large and no additional information on the adequacy of current water vapor spectral line or continuum absorption parameters may be derived. Similar future experiments in similarly cold and dry environments will require absolute accuracy of 0.1% of a 273 K blackbody in radiance and water vapor accuracy of similar to 3% in the profile layers contributing to downwelling radiance at the surface. (C) 2017 Published by Elsevier Ltd.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 31 条
[1]   Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band [J].
Bhawar, R. ;
Bianchini, G. ;
Bozzo, A. ;
Cacciani, M. ;
Calvello, M. R. ;
Carlotti, M. ;
Castagnoli, F. ;
Cuomo, V. ;
Di Girolamo, P. ;
Di Iorio, T. ;
Di Liberto, L. ;
Di Sarra, A. ;
Esposito, F. ;
Fiocco, G. ;
Fua, D. ;
Grieco, G. ;
Maestri, T. ;
Masiello, G. ;
Muscari, G. ;
Palchetti, L. ;
Papandrea, E. ;
Pavese, G. ;
Restieri, R. ;
Rizzi, R. ;
Romano, F. ;
Serio, C. ;
Summa, D. ;
Todini, G. ;
Tosi, E. .
GEOPHYSICAL RESEARCH LETTERS, 2008, 35 (04)
[2]  
Canas A., 1997, Proceedings of the SPIE - The International Society for Optical Engineering, V3220, P91, DOI 10.1117/12.301139
[3]   Comparison of Ground-Based Millimeter-Wave Observations and Simulations in the Arctic Winter [J].
Cimini, Domenico ;
Nasir, Francesco ;
Westwater, Ed R. ;
Payne, Vivienne H. ;
Turner, David D. ;
Mlawer, Eli J. ;
Exner, Michael L. ;
Cadeddu, Maria P. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (09) :3098-3106
[4]   Atmospheric radiative transfer modeling: a summary of the AER codes [J].
Clough, SA ;
Shephard, MW ;
Mlawer, E ;
Delamere, JS ;
Iacono, M ;
Cady-Pereira, K ;
Boukabara, S ;
Brown, PD .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2005, 91 (02) :233-244
[5]   A far-infrared radiative closure study in the Arctic: Application to water vapor [J].
Delamere, J. S. ;
Clough, S. A. ;
Payne, V. H. ;
Mlawer, E. J. ;
Turner, D. D. ;
Gamache, R. R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[6]   Analysis of far-infrared spectral radiance observations of the water vapor continuum in the Arctic [J].
Fox, Cathryn ;
Green, Paul D. ;
Pickering, Juliet C. ;
Humpage, Neil .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2015, 155 :57-65
[7]   Recent advances in measurement of the water vapour continuum in the far-infrared spectral region [J].
Green, Paul D. ;
Newman, Stuart M. ;
Beeby, Ralph J. ;
Murray, Jonathan E. ;
Pickering, Juliet C. ;
Harries, John E. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2012, 370 (1968) :2637-2655
[8]   THE FAR-INFRARED EARTH [J].
Harries, J. ;
Carli, B. ;
Rizzi, R. ;
Serio, C. ;
Mlynczak, M. ;
Palchetti, L. ;
Maestri, T. ;
Brindley, H. ;
Masiello, G. .
REVIEWS OF GEOPHYSICS, 2008, 46 (04)
[9]   Atmospheric emitted radiance interferometer. part I: Instrument design [J].
Knuteson, RO ;
Revercomb, HE ;
Best, FA ;
Ciganovich, NC ;
Dedecker, RG ;
Dirkx, TP ;
Ellington, SC ;
Feltz, WF ;
Garcia, RK ;
Howell, HB ;
Smith, WL ;
Short, JF ;
Tobin, DC .
JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2004, 21 (12) :1763-1776
[10]  
Kratz David P., 2002, Proceedings of the SPIE - The International Society for Optical Engineering, V4485, P171, DOI 10.1117/12.454249