Two composites based on CoMoO4 nanorods and PPy nanoparticles: Fabrication, structure and electrochemical properties

被引:26
作者
Chen, Yong [1 ]
Kang, Guiying [1 ]
Xu, Hui [1 ]
Kang, Long [2 ]
机构
[1] Lanzhou Univ Technol, Coll Perochem Engn, Lanzhou 730050, Peoples R China
[2] Lanzhou Univ Technol, Colloge Mat Sci & Engn, Lanzhou 730050, Peoples R China
基金
中国国家自然科学基金;
关键词
Polypyrrole; Cobalt molybdate; Composite; Supercapacitor; ELECTRODE MATERIAL; POLYPYRROLE; PERFORMANCE; POLYMERIZATION; LATEX; FILM;
D O I
10.1016/j.synthmet.2016.02.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, we fabricate two composites based on CoMoO4 nanorods and PPy nanoparticles. The results of Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) prove that two composites structure are very different, and the major component of composites play an apparently decisive role in affecting the structure of composites. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) are applied to characterize the electrochemical performance of the composites. The specific capacitance of CoMoO4/PPy is 232 F g(-1) in 0.5 M Na2SO4 solution and that of PPy/CoMoO4 is 230 F g(-1) in 1M KOH solution, considerably higher than their constituents. In contrast to PPy (13%) and CoMoO4 (67%), the capacitance retention of CoMoO4/PPy and PPy/CoMoO4 are 20.7% and 74.6% after 1000 cycles at the current density of 2 A g(-1). The results infer that for two composites, there is a synergistic effect between PPy and CoMoO4, and, to some extent, the electrochemical performance of composites is determined by the major component. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:50 / 55
页数:6
相关论文
共 35 条
[1]  
Angaiah S., 2008, POLYM ADVAN TECHNOL, V19, P725
[2]   Fabrication of polypyrrole/graphene oxide nanocomposites by liquid/liquid interfacial polymerization and evaluation of their optical, electrical and electrochemical properties [J].
Bora, C. ;
Dolui, S. K. .
POLYMER, 2012, 53 (04) :923-932
[3]   In-situ synthesis and characterization of electrically conductive polypyrrole/graphene nanocomposites [J].
Bose, Saswata ;
Kuila, Tapas ;
Uddin, Md Elias ;
Kim, Nam Hoon ;
Lau, Alan K. T. ;
Lee, Joong Hee .
POLYMER, 2010, 51 (25) :5921-5928
[4]   Study of self-crosslinking acrylate latex containing fluorine [J].
Chen, YJ ;
Zhang, CC ;
Wang, YF ;
Cheng, SY ;
Chen, PZ .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 90 (13) :3609-3616
[5]   PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor [J].
Cho, Seung Hyun ;
Joo, Jin Soo ;
Jung, Bo Ram ;
Ha, Tae Min ;
Lee, Jun Young .
MACROMOLECULAR RESEARCH, 2009, 17 (10) :746-749
[6]   Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor [J].
Dubal, Deepak P. ;
Lee, Sang Ho ;
Kim, Jong Guk ;
Kim, Won Bae ;
Lokhande, Chandrakant D. .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (07) :3044-3052
[7]   One-step oxidation of aniline by peroxotitanium acid to polyaniline-titanium dioxide: A highly stable electrode for a supercapacitor [J].
Gottam, Ramesh ;
Srinivasan, Palaniappan .
JOURNAL OF APPLIED POLYMER SCIENCE, 2015, 132 (13)
[8]   Graphene nanoplate-MnO2 composites for supercapacitors: a controllable oxidation approach [J].
Huang, Huajie ;
Wang, Xin .
NANOSCALE, 2011, 3 (08) :3185-3191
[9]  
Jun X.U., 2005, CHEM ADHES, V27, P127
[10]   Synthesis of conducting polypyrrole by radiolysis polymerization method [J].
Karim, M. R. ;
Lee, C. J. ;
Lee, M. S. .
POLYMERS FOR ADVANCED TECHNOLOGIES, 2007, 18 (11) :916-920