Exact solutions of the saturable discrete nonlinear Schrodinger equation

被引:75
作者
Khare, A [1 ]
Rasmussen, KO
Samuelsen, MR
Saxena, A
机构
[1] Inst Phys, Bhubaneswar 751005, Orissa, India
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2005年 / 38卷 / 04期
关键词
D O I
10.1088/0305-4470/38/4/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Exact solutions to a nonlinear Schrodinger lattice with a saturable nonlinearity are reported. For finite lattices we find two different standing-wave-like solutions, and for an infinite lattice we find a localized soliton-like solution. The existence requirements and stability of these solutions are discussed, and we find that our solutions are linearly stable in most cases. We also show that the effective Peierls-Nabarro barrier potential is nonzero thereby indicating that this discrete model is quite likely nonintegrable.
引用
收藏
页码:807 / 814
页数:8
相关论文
共 16 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[2]   CNOIDAL WAVES AS EXACT SUMS OF REPEATED SOLITARY WAVES - NEW SERIES FOR ELLIPTIC FUNCTIONS [J].
BOYD, JP .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1984, 44 (05) :952-955
[3]   NONLINEAR DYNAMICS OF THE FRENKEL-KONTOROVA MODEL WITH IMPURITIES [J].
BRAUN, OM ;
KIVSHAR, YS .
PHYSICAL REVIEW B, 1991, 43 (01) :1060-1073
[4]   ENERGY LOCALIZATION IN NONLINEAR LATTICES [J].
DAUXOIS, T ;
PEYRARD, M .
PHYSICAL REVIEW LETTERS, 1993, 70 (25) :3935-3938
[5]  
Drazin P.G., 1989, SOLITONS INTRO
[6]   Discrete spatial optical solitons in waveguide arrays [J].
Eisenberg, HS ;
Silberberg, Y ;
Morandotti, R ;
Boyd, AR ;
Aitchison, JS .
PHYSICAL REVIEW LETTERS, 1998, 81 (16) :3383-3386
[7]   SOLITON PROPAGATION IN MATERIALS WITH SATURABLE NONLINEARITY [J].
GATZ, S ;
HERRMANN, J .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1991, 8 (11) :2296-2302
[8]   SOLITON PROPAGATION AND SOLITON COLLISION IN DOUBLE-DOPED FIBERS WITH A NON-KERR-LIKE NONLINEAR REFRACTIVE-INDEX CHANGE [J].
GATZ, S ;
HERRMANN, J .
OPTICS LETTERS, 1992, 17 (07) :484-486
[9]   The discrete nonlinear Schrodinger equation: A survey of recent results [J].
Kevrekidis, PG ;
Rasmussen, KO ;
Bishop, AR .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2001, 15 (21) :2833-2900
[10]   Cyclic identities for Jacobi elliptic and related functions [J].
Khare, A ;
Lakshminarayan, A ;
Sukhatme, U .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (04) :1822-1841