Adaptive anti-synchronization of chaotic systems with fully unknown parameters

被引:46
作者
Al-sawalha, M. Mossa [1 ]
Noorani, M. S. M. [1 ]
Al-dlalah, M. M. [1 ]
机构
[1] Univ Kebangsaan Malaysia, Sch Math Sci, Ctr Modelling & Data Anal, Ukm Bangi 43600, Selangor, Malaysia
关键词
Lorenz system; Chen system; Anti-synchronization; Adaptive control; Unknown parameters; HYPERCHAOTIC SYSTEMS;
D O I
10.1016/j.camwa.2010.03.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper centers on the chaos anti-synchronization between two identical or different chaotic systems using adaptive control. The sufficient conditions for achieving the anti-synchronization of two chaotic systems are derived based on Lyapunov stability theory. An adaptive control law and a parameter update rule for unknown parameters are introduced such that the Chen system is controlled to be the Lorenz system. Theoretical analysis and numerical simulations are shown to verify the results. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3234 / 3244
页数:11
相关论文
共 20 条
[1]   Active Anti-Synchronization Between Identical and Distinctive Hyperchaotic Systems [J].
Al-sawalha, M. M. ;
Noorani, M. S. M. .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2008, 15 (04) :371-382
[2]   Chaos anti-synchronization between two novel different hyperchaotic systems [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
CHINESE PHYSICS LETTERS, 2008, 25 (08) :2743-2746
[3]   Anti-synchronization of chaotic systems with uncertain parameters via adaptive control [J].
Al-sawalha, M. Mossa ;
Noorani, M. S. M. .
PHYSICS LETTERS A, 2009, 373 (32) :2852-2857
[4]   On anti-synchronization of chaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
CHAOS SOLITONS & FRACTALS, 2009, 42 (01) :170-179
[5]   Anti-synchronization of two hyperchaotic systems via nonlinear control [J].
Al-Sawalha, M. Mossa ;
Noorani, M. S. M. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (08) :3402-3411
[6]   Huygens's clocks [J].
Bennett, M ;
Schatz, MF ;
Rockwood, H ;
Wiesenfeld, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2019) :563-579
[7]  
Chen G., 1998, CHAOS ORDER
[8]   Yet another chaotic attractor [J].
Chen, GR ;
Ueta, T .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07) :1465-1466
[9]   Synchronization and anti-synchronization of a hyperchaotic Chen system [J].
El-Dessoky, M. M. .
CHAOS SOLITONS & FRACTALS, 2009, 39 (04) :1790-1797
[10]   Phase and anti-phase synchronization of two chaotic systems by using active control [J].
Ho, MC ;
Hung, YC ;
Chou, CH .
PHYSICS LETTERS A, 2002, 296 (01) :43-48