The primitive p-Frobenius groups

被引:2
作者
Fleischmann, P
Lempken, W
Tiep, PH
机构
[1] Univ Essen Gesamthsch, Inst Expt Math, D-45326 Essen, Germany
[2] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
D O I
10.1090/S0002-9939-98-04491-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p be a fixed prime. A finite primitive permutation group G with every two-point stabilizer G(alpha,beta) being a p-group is called a primitive p-Frobenius group. Using our earlier results on p-intersection subgroups, Re give a complete classification of the primitive p-Frobenius groups.
引用
收藏
页码:1337 / 1343
页数:7
相关论文
共 9 条
[1]   FINITE NON-SOLVABLE GROUPS WITH NILPOTENT MAXIMAL SUBGROUPS [J].
BAUMANN, B .
JOURNAL OF ALGEBRA, 1976, 38 (01) :119-135
[2]   Finite p'-semiregular groups [J].
Fleischmann, P ;
Lempken, W ;
Tiep, PH .
JOURNAL OF ALGEBRA, 1997, 188 (02) :547-579
[3]  
FLEISCHMANN W, UNPUB P INTERSECTION
[4]  
Gorenstein D., 1980, Finite groups, V2
[5]   GALOIS-GROUPS AND THE MULTIPLICATIVE STRUCTURE OF FIELD-EXTENSIONS [J].
GURALNICK, R ;
WIEGAND, R .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 331 (02) :563-584
[6]  
Huppert B., 1967, ENDLICHE GRUPPEN
[7]   ON THE ONAN-SCOTT THEOREM FOR FINITE PRIMITIVE PERMUTATION-GROUPS [J].
LIEBECK, MW ;
PRAEGER, CE ;
SAXL, J .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1988, 44 :389-396
[8]  
Scott L. L., 1980, P S PURE MATH, V37, P318
[9]  
Zassenhaus H., 1935, ABH MATH SEM HAMBURG, V11, P187, DOI 10.1007/BF02940723