Discrete ejector control solution design, characterization, and verification in a 5 kW PEMFC system

被引:67
作者
Nikiforow, K. [1 ]
Koski, P. [1 ]
Ihonen, J. [1 ]
机构
[1] VTT Tech Res Ctr Finland, POB 1000, Espoo 02044, Finland
基金
芬兰科学院;
关键词
PEMFC; Anode gas recirculation; Ejector; Ejector control; Inert build-up; Power ramp-up; FUEL-CELL SYSTEM; VACUUM EJECTOR; RECIRCULATION; ANODE; FLOW; OPTIMIZATION; PARAMETERS; OPERATION; NITROGEN; PURGE;
D O I
10.1016/j.ijhydene.2017.05.151
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An ejector primary gas flow control solution based on three solenoid valves is designed, implemented and tested in a 5 kW proton exchange membrane fuel cell (PEMFC) system with ejector-based anode gas recirculation. The robust and cost effective combination of the tested flow control method and a single ejector is shown to achieve adequate anode gas recirculation rate on a wide PEMFC load range. In addition, the effect of anode gas inert content on ejector performance in the 5 kW PEMFC system is studied at varying load and anode pressure levels. Results show that increasing the inert content increases recirculated anode gas mass flow rate but decreases both the molar flow rate and the anode inlet humidity. Finally, the PEMFC power ramp-rate limitations are studied using two fuel supply strategies: 1) advancing fuel supply and venting out extra fuel and 2) not advancing fuel supply but instead using a large anode volume. Results indicate that the power of the present PEMFC system can be ramped from 1 kW to 4.2 kW within few hundred milliseconds using either of these strategies. (C) 2017 The Authors. Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:16760 / 16772
页数:13
相关论文
共 27 条
[11]   Improved PEM fuel cell system operation with cascaded stack and ejector-based recirculation [J].
Jenssen, Dirk ;
Berger, Oliver ;
Krewer, Ulrike .
APPLIED ENERGY, 2017, 195 :324-333
[12]   Anode flooding characteristics as design boundary for a hydrogen supply system for automotive polymer electrolyte membrane fuel cells [J].
Jenssen, Dirk ;
Berger, Oliver ;
Krewer, Ulrike .
JOURNAL OF POWER SOURCES, 2015, 298 :249-258
[13]   The use of on-line hydrogen sensor for studying inert gas effects and nitrogen crossover in PEMFC system [J].
Karimaki, H. ;
Perez, L. C. ;
Nikiforow, K. ;
Keranen, T. M. ;
Viitakangas, J. ;
Ihonen, J. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (16) :10179-10187
[14]  
Karnik A. Y., 2006, 2006 American Control Conference (IEEE Cat. No. 06CH37776C)
[15]   Parametric study on interaction of blower and back pressure control valve for a 80-kW class PEM fuel cell vehicle [J].
Kim, Dong Kyu ;
Min, Hyung Eun ;
Kong, Im Mo ;
Lee, Min Kyu ;
Lee, Chang Ha ;
Kim, Min Soo ;
Song, Han Ho .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (39) :17595-17615
[16]   Customized design for the ejector to recirculate a humidified hydrogen fuel in a submarine PEMFC [J].
Kim, Minjin ;
Sohn, Young-Jun ;
Cho, Chung-Won ;
Lee, Won-Yong ;
Kim, Chang-Soo .
JOURNAL OF POWER SOURCES, 2008, 176 (02) :529-533
[17]   Comparing Anode Gas Recirculation with Hydrogen Purge and Bleed in a Novel PEMFC Laboratory Test Cell Configuration [J].
Koski, P. ;
Perez, L. C. ;
Ihonen, J. .
FUEL CELLS, 2015, 15 (03) :494-504
[18]  
Lyndon B., 2011, PRESSURE REGULATOR I
[19]   Optimization of geometric parameters for design a high-performance ejector in the proton exchange membrane fuel cell system using artificial neural network and genetic algorithm [J].
Maghsoodi, A. ;
Afshari, E. ;
Ahmadikia, H. .
APPLIED THERMAL ENGINEERING, 2014, 71 (01) :410-418
[20]  
Matsuda Y, 2009, REV AUTOMOT ENG, V30, P167, DOI DOI 10.11351/