Parabolic Kirchhoff equations with non-homogeneous flux boundary conditions: well-posedness, regularity and asymptotic behavior

被引:2
作者
Mamani Luna, Tito L. [1 ]
Madeira, Gustavo Ferron [2 ]
机构
[1] Univ Sao Paulo, Dept Matemat, Inst Ciencias Matemat & Comp, Campus Sao Carlos, Sao Carlos, SP, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
关键词
parabolic Kirchhoff equation; well-posedness; asymptotic behavior; regularity; a priori estimates; stability of energy minimizers; L-P NORM; GLOBAL SOLVABILITY; ELLIPTIC EQUATION; DIFFUSION PROBLEM; LOCAL EXISTENCE; BLOW-UP; MODEL; HEAT;
D O I
10.1088/1361-6544/ac0f52
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate well-posedness, regularity and asymptotic behavior of parabolic Kirchhoff equations partial derivative(t)u - a (integral vertical bar del u vertical bar(2)) Delta u + alpha(x) u = f (x) in Omega x (0, infinity), on bounded domains of R-N, N >= 2, with non-homogeneous flux boundary conditions a (integral vertical bar del u vertical bar(2)) partial derivative u/partial derivative nu + beta(x)u = g(x) on partial derivative Omega x (0, infinity) of Neumann or Robin type. The data in the problem satisfy (f, g, u(0)) is an element of L-2(Omega) x L-2(partial derivative Omega) x H-1(Omega). Approximated solutions are constructed using time rescaling and a complete set in H-1(Omega) relating the equation and the boundary condition. Uniform global estimates are derived and used to prove existence, uniqueness, continuous dependence on data, a priori estimates and higher regularity for the parabolic problem. Existence and uniqueness of stationary solutions are shown, as well as a description about their role on the asymptotic behavior regarding to the evolutionary equation. Furthermore, a sufficient condition for the existence of isolated local energy minimizers is provided. They are shown to be asymptotically stable stationary solutions for the parabolic equation.
引用
收藏
页码:5844 / 5871
页数:28
相关论文
共 71 条
[1]   Positive solutions for a quasilinear elliptic equation of Kirchhoff type [J].
Alves, CO ;
Corrêa, FJSA ;
Ma, TF .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2005, 49 (01) :85-93
[2]  
Amann H., 1990, An introduction to nonlinear analysis
[3]   Positive Solutions of Elliptic Kirchhoff Equations [J].
Ambrosetti, Antonio ;
Arcoya, David .
ADVANCED NONLINEAR STUDIES, 2017, 17 (01) :3-15
[4]   A nonlocal p-Laplacian evolution equation with Neumann boundary conditions [J].
Andreu, F. ;
Mazon, J. M. ;
Rossi, J. D. ;
Toledo, J. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 90 (02) :201-227
[5]  
Andreu F., 2010, MATH SURVEYS MONOGRA, V165
[6]  
[Anonymous], 1983, PARTIAL DIFFERENTIAL
[7]   On the well-posedness of the Kirchhoff string [J].
Arosio, A ;
Panizzi, S .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :305-330
[8]  
Auchmuty JFG., 1973, LECT NOTES MATH, V322, P1, DOI 10.1007/bfb0060559
[9]   Global Nonexistence for Nonlinear Kirchhoff Systems [J].
Autuori, Giuseppina ;
Pucci, Patrizia ;
Salvatori, Maria Cesarina .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 196 (02) :489-516
[10]  
Bandle C, 2006, REND LINCEI-MAT APPL, V17, P35