Estimation of diffusive states from single-particle trajectory in heterogeneous medium using machine-learning methods

被引:19
作者
Matsuda, Yu [1 ]
Hanasaki, Itsuo [2 ]
Iwao, Ryo [3 ]
Yamaguchi, Hiroki [3 ]
Niimi, Tomohide [3 ]
机构
[1] Waseda Univ, Dept Modern Mech Engn, Shinjuku Ku, 3-4-1 Ookubo, Tokyo 1698555, Japan
[2] Tokyo Univ Agr & Technol, Dept Mech Syst Engn, Naka Cho 2-24-16, Koganei, Tokyo 1848588, Japan
[3] Nagoya Univ, Dept Micronano Mech Sci & Engn, Chikusa Ku, Furo Cho, Nagoya, Aichi 4648603, Japan
关键词
MOLECULE TRACKING; NANOPARTICLES; MICROSCOPY; MODELS; RATES;
D O I
10.1039/c8cp02566e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We propose a novel approach to analyze random walks in heterogeneous medium using a hybrid machine-learning method based on a gamma mixture and a hidden Markov model. A gamma mixture and a hidden Markov model respectively provide the number and the most probable sequence of diffusive states from the time series position data of particles/molecules obtained by single-particle/molecule tracking (SPT/SMT) method. We evaluate the performance of our proposed method for numerically generated trajectories. It is shown that our proposed method can correctly extract the number of diffusive states when each trajectory is long enough to be frame averaged. We also indicate that our method can provide an indicator whether the assumption of a medium consisting of discrete diffusive states is appropriate or not based on the available amount of trajectory data. Then, we demonstrate an application of our method to the analysis of experimentally obtained SPT data.
引用
收藏
页码:24099 / 24108
页数:10
相关论文
共 47 条
[1]  
Bishop Christopher M, 2016, Pattern recognition and machine learning
[2]   Classification of Dynamical Diffusion States in Single Molecule Tracking Microscopy [J].
Bosch, Peter J. ;
Kanger, Johannes S. ;
Subramaniam, Vinod .
BIOPHYSICAL JOURNAL, 2014, 107 (03) :588-598
[3]   Learning Rates and States from Biophysical Time Series: A Bayesian Approach to Model Selection and Single-Molecule FRET Data [J].
Bronson, Jonathan E. ;
Fei, Jingyi ;
Hofman, Jake M. ;
Gonzalez, Ruben L., Jr. ;
Wiggins, Chris H. .
BIOPHYSICAL JOURNAL, 2009, 97 (12) :3196-3205
[4]   Distribution of directional change as a signature of complex dynamics [J].
Burov, Stanislav ;
Tabei, S. M. Ali ;
Toan Huynh ;
Murrell, Michael P. ;
Philipson, Louis H. ;
Rice, Stuart A. ;
Gardel, Margaret L. ;
Scherer, Norbert F. ;
Dinner, Aaron R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (49) :19689-19694
[5]   Characterizing the Lateral Friction of Nanoparticles on On-Chip Integrated Black Lipid Membranes [J].
Chen, Tianhong ;
Reinhard, Bjoern M. .
SMALL, 2013, 9 (06) :876-884
[6]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[7]   Trajectory analysis of single molecules exhibiting non-Brownian motion [J].
Elliott, Lindsay C. C. ;
Barhoum, Moussa ;
Harris, Joel M. ;
Bohn, Paul W. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (10) :4326-4334
[8]   An introduction to hidden Markov models and Bayesian networks [J].
Ghahramani, Z .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2001, 15 (01) :9-42
[9]   Three-Dimensional Super-Localization and Tracking of Single Gold Nanoparticles in Cells [J].
Gu, Yan ;
Di, Xiaowei ;
Sun, Wei ;
Wang, Gufeng ;
Fang, Ning .
ANALYTICAL CHEMISTRY, 2012, 84 (09) :4111-4117
[10]   Single-Molecule Study on Polymer Diffusion in a Melt State: Effect of Chain Topology [J].
Habuchi, Satoshi ;
Fujiwara, Susumu ;
Yamamoto, Takuya ;
Vacha, Martin ;
Tezuka, Yasuyuki .
ANALYTICAL CHEMISTRY, 2013, 85 (15) :7369-7376