On commutators and nilpotent elements in simple rings

被引:9
作者
Chebotar, M. [1 ]
Lee, P-H. [2 ,3 ]
Puczylowski, E. R. [4 ]
机构
[1] Kent State Univ, Dept Math Sci, Kent, OH 44242 USA
[2] Natl Taiwan Univ, Dept Math, Taipei 10764, Taiwan
[3] Taipei Off, Natl Ctr Theoret Sci, Taipei, Taiwan
[4] Univ Warsaw, Inst Math, PL-2 Warsaw, Banacha, Poland
关键词
DISTRIBUTIVE RINGS; SUMS;
D O I
10.1112/blms/bdp089
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a simple ring with nontrivial zero-divisors. It is proved that every commutator in R is a sum of nilpotent elements if R contains nontrivial idempotents, but it is not so if R does not. An example is also given to show that not every commutator in a prime ring with nontrivial idempotents can be expressed as a sum of nilpotent elements.
引用
收藏
页码:191 / 194
页数:4
相关论文
共 16 条
[1]  
[Anonymous], MAT SBORNIK
[2]  
BESSENRODT C, 1990, SCHRIFTENREIHE FACHB, V74
[3]  
DUBROVIN NI, 1984, MATH USSR SB, V48, P437
[4]  
Harris B., 1958, Proc. Amer. Math. Soc., V9, P628
[5]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[6]   LIE AND JORDAN STRUCTURES IN SIMPLE, ASSOCIATIVE RINGS [J].
HERSTEIN, IN .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (06) :517-&
[7]  
HERSTEIN IN, 1969, TOPICS RING THEORY
[8]  
JAIN SK, 1977, LECT NOTES PURE APPL, V25, P143
[9]  
Marcoux LW, 2006, J OPERAT THEOR, V56, P111
[10]  
Marcoux LW, 2002, INDIANA U MATH J, V51, P753