Energy levels of ground and singly excited states of two-electron atoms in dense quantum plasmas

被引:16
作者
Zhang, Yong Zhi [1 ]
Jiao, Li Guang [2 ]
Liu, Fang [3 ]
Liu, Ai Hua [4 ]
Ho, Yew Kam [5 ]
机构
[1] Heilongjiang Univ, Coll Phys Sci & Technol, Harbin 150080, Peoples R China
[2] Jilin Univ, Coll Phys, Changchun 130012, Peoples R China
[3] East Univ Heilongjiang, Dept Comp Sci & Elect Engn, Harbin 150066, Peoples R China
[4] Jilin Univ, Inst Atom & Mol Phys, Changchun 130012, Peoples R China
[5] Acad Sinica, Inst Atom & Mol Sci, Taipei 10617, Taiwan
基金
中国国家自然科学基金;
关键词
SYSTEMS; FIELD;
D O I
10.1016/j.adt.2021.101420
中图分类号
O64 [物理化学(理论化学)、化学物理学]; O56 [分子物理学、原子物理学];
学科分类号
070203 ; 070304 ; 081704 ; 1406 ;
摘要
The screening effect of dense quantum plasmas on the ground and singly excited states of two-electron atoms are investigated by employing the explicitly correlated Hylleraas configuration-interaction wave functions in the framework of Ritz variational principle. Exponential cosine screened Coulomb potential is used to model the electron-nucleus and interelectronic interactions in the atomic systems. Energy levels for the ground and 1snl L-1,L-3 (n <= 5 and 1 <= 4) singly excited states of H-, He, Li+, Be2+, and B3+ are reported for screening parameters varying from zero to the value nearing corresponding critical screening parameter. Convergence of our calculations are estimated by systematically increasing the number of basis functions. A thorough comparison with available theoretical predictions on the ground state energies at various screening parameters is made, while for the excited states a comparison with the well-established energies of unscreened atoms is performed. The variation of ionization energy and the validity of Hund's rule for two-electron systems in dense quantum plasmas are analyzed. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:32
相关论文
共 51 条
[31]   Oscillatory screening and quantum interference effects on electron collisions in quantum plasmas [J].
Na, Sang-Chul ;
Jung, Young-Dae .
PHYSICS LETTERS A, 2008, 372 (34) :5605-5608
[32]   Solving the Schrodinger equation for helium atom and its isoelectronic ions with the free iterative complement interaction (ICI) method [J].
Nakashima, Hiroyuki ;
Nakatsuji, Hiroshi .
JOURNAL OF CHEMICAL PHYSICS, 2007, 127 (22)
[33]   The Renyi entropy, a comparative study for He-like atoms using the exponential-cosine screened Coulomb potential [J].
Nasser, I. ;
Zeama, Mostafa ;
Abdel-Hady, Afaf .
RESULTS IN PHYSICS, 2017, 7 :3892-3900
[34]   Calculation of information entropies for the 1s2state of helium-like ions [J].
Nasser, Ibraheem ;
Zeama, Mostafa ;
Abdel-Hady, Afaf .
INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2021, 121 (05)
[35]   Renyi, Fisher, Shannon, and their electron correlation tools for two-electron series [J].
Nasser, Ibraheem ;
Zeama, Mostafa ;
Abdel-Hady, Afaf .
PHYSICA SCRIPTA, 2020, 95 (09)
[36]   Structural properties of hydrogen-like ions (Z=1-18) under quantum and classical plasma environment [J].
Nayek, Sujay Kr. ;
Mondal, Santanu ;
Saha, Jayanta K. .
ATOMIC DATA AND NUCLEAR DATA TABLES, 2021, 137 (137)
[37]  
PROKOPEV EP, 1967, FIZ TVERD TELA+, V9, P993
[38]   Photoionization of hydrogen-like ions in dense quantum plasmas [J].
Qi, Y. Y. ;
Wang, J. G. ;
Janev, R. K. .
PHYSICS OF PLASMAS, 2017, 24 (06)
[39]   Bound-bound transitions in hydrogen-like ions in dense quantum plasmas [J].
Qi, Y. Y. ;
Wang, J. G. ;
Janev, R. K. .
PHYSICS OF PLASMAS, 2016, 23 (07)
[40]   Positron impact excitations of hydrogen atom embedded in dense quantum plasmas: Formation of Rydberg atoms [J].
Rej, Pramit ;
Ghoshal, Arijit .
PHYSICS OF PLASMAS, 2014, 21 (11)