Regulation of peroxisome proliferator-activated receptor-γ activity by mammalian target of rapamycin and amino acids in adipogenesis

被引:370
作者
Kim, JE [1 ]
Chen, J [1 ]
机构
[1] Univ Illinois, Dept Cell & Struct Biol, Urbana, IL 61801 USA
关键词
D O I
10.2337/diabetes.53.11.2748
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Adipocyte differentiation is a developmental process that is critical for metabolic homeostasis and nutrient signaling. The mammalian target of rapamycin (mTOR) mediates nutrient signaling to regulate cell growth, proliferation, and diverse cellular differentiation. It has been reported that rapamycin, the inhibitor of mTOR and an immunosuppressant, blocks adipocyte differentiation, but the mechanism underlying this phenomenon remains unknown. Here we show that mTOR plays a critical role in 3T3-L1 preadipocyte differentiation and that mTOR kinase activity is required for this process. Rapamycin specifically disrupted the positive transcriptional feedback loop between CCAAT/enhancer-binding protein-alpha and peroxisome proliferator-activated receptor-gamma (PPAR-gamma), two key transcription factors in adipogenesis, by directly targeting the transactivation activity of PPAR-gamma. In addition, we demonstrate for the first time that PPAR-gamma activity is dependent on amino acid sufficiency, revealing a molecular link between nutrient status and adipogenesis. The results of our further investigation have led us to propose a model in which the mTOR pathway and the phosphatidylinositol 3-kinase/Akt pathway act in parallel to regulate PPAR-gamma activation during adipogenesis by mediating nutrient availability and insulin signals, respectively. It is interesting that troglitazone (a thiazolidinedione drug) reversed the inhibitory effects of rapamycin and amino acid deprivation, implicating therapeutic values of thiazolidinedione drugs to counter certain side effects of rapamycin as an immunosuppressant.
引用
收藏
页码:2748 / 2756
页数:9
相关论文
共 56 条
[1]   Mammalian target of rapamycin: immunosuppressive drugs uncover a novel pathway of cytokine receptor signaling [J].
Abraham, RT .
CURRENT OPINION IN IMMUNOLOGY, 1998, 10 (03) :330-336
[2]   Rapamycin inhibits human adipocyte differentiation in primary culture [J].
Bell, A ;
Grunder, L ;
Sorisky, A .
OBESITY RESEARCH, 2000, 8 (03) :249-254
[3]   Rapamycin inhibits alpha(1)-adrenergic receptor-stimulated cardiac myocyte hypertrophy but not activation of hypertrophy-associated genes - Evidence for involvement of p70 S6 kinase [J].
Boluyt, MO ;
Zheng, JS ;
Younes, A ;
Long, XL ;
ONeill, L ;
Silverman, H ;
Lakatta, EG ;
Crow, MT .
CIRCULATION RESEARCH, 1997, 81 (02) :176-186
[4]   Hyperlipidemia in renal transplant recipients treated with sirolimus (rapamycin) [J].
Brattström, C ;
Wilczek, H ;
Tydén, G ;
Böttiger, Y ;
Säwe, J ;
Groth, CG .
TRANSPLANTATION, 1998, 65 (09) :1272-1274
[5]   CONTROL OF P70 S6 KINASE BY KINASE-ACTIVITY OF FRAP IN-VIVO [J].
BROWN, EJ ;
BEAL, PA ;
KEITH, CT ;
CHEN, J ;
SHIN, TB ;
SCHREIBER, SL .
NATURE, 1995, 377 (6548) :441-446
[6]   IDENTIFICATION OF AN 11-KDA FKBP12-RAPAMYCIN-BINDING DOMAIN WITHIN THE 289-KDA FKBP12-RAPAMYCIN-ASSOCIATED PROTEIN AND CHARACTERIZATION OF A CRITICAL SERINE RESIDUE [J].
CHEN, J ;
ZHENG, XF ;
BROWN, EJ ;
SCHREIBER, SL .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :4947-4951
[7]   REGULATION OF ADIPOCYTE DEVELOPMENT [J].
CORNELIUS, P ;
MACDOUGALD, OA ;
LANE, MD .
ANNUAL REVIEW OF NUTRITION, 1994, 14 :99-129
[8]   The role of C/EBP genes in adipocyte differentiation [J].
Darlington, GJ ;
Ross, SE ;
MacDougald, OA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (46) :30057-30060
[9]   Mammalian TOR: A homeostatic ATP sensor [J].
Dennis, PB ;
Jaeschke, A ;
Saitoh, M ;
Fowler, B ;
Kozma, SC ;
Thomas, G .
SCIENCE, 2001, 294 (5544) :1102-1105
[10]   Convergence of peroxisome proliferator-activated receptor γ and Foxo1 signaling pathways [J].
Dowell, P ;
Otto, TC ;
Adi, S ;
Lane, MD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (46) :45485-45491