Finite-Dimensional Bistable Topological Insulators: From Small to Large

被引:25
作者
Zhang, Weifeng [1 ]
Chen, Xianfeng [1 ]
Kartashov, Yaroslav V. [2 ]
Skryabin, Dmitry V. [3 ]
Ye, Fangwei [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Phys & Astron, Shanghai 200240, Peoples R China
[2] Russian Acad Sci, Inst Spect, Moscow 108840, Russia
[3] Univ Bath, Dept Phys, Bath BA2 7AY, Avon, England
基金
上海市自然科学基金; 中国国家自然科学基金; 俄罗斯基础研究基金会;
关键词
bistability; edge states; photonic topological insulators; EDGE STATES;
D O I
10.1002/lpor.201900198
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Photonic topological insulators supporting unidirectional topologically protected edge states represent an attractive platform for the realization of disorder- and backscattering-immune transport of edge excitations in both linear and nonlinear regimes. While the properties of the edge states at unclosed interfaces of two bulk media with different topologies are known, the existence of edge states in practical finite-dimensional topological insulators fully immersed in a nontopological environment remains largely unexplored. In this work, using realistic polariton topological insulators built from small-size honeycomb arrays of microcavity pillars as an example, it is shown how topological properties of the system build up upon gradual increase of its dimensionality. To account for the dissipative nature of the polariton condensate forming in the array of microcavity pillars, the impact of losses and resonant pump leading to rich bistability effects in this system is considered. The mechanism is described in accordance with which trivial-phase pump "selects" and excites specific nonlinear topological edge states circulating along the periphery of the structure in the azimuthal direction, dictated by the direction of the external applied magnetic field. The possibility of utilization of vortex pump with different topological charges for selective excitation of different edge currents is also shown.
引用
收藏
页数:7
相关论文
共 57 条
  • [1] Unstable and stable regimes of polariton condensation
    Baboux, F.
    De Bernardis, D.
    Goblot, V
    Gladilin, V. N.
    Gomez, C.
    Galopin, E.
    Le Gratiet, L.
    Lemaitre, A.
    Sagnes, I
    Carusotto, I
    Wouters, M.
    Amo, A.
    Bloch, J.
    [J]. OPTICA, 2018, 5 (10): : 1163 - 1170
  • [2] Bosonic Condensation and Disorder-Induced Localization in a Flat Band
    Baboux, F.
    Ge, L.
    Jacqmin, T.
    Biondi, M.
    Galopin, E.
    Lemaitre, A.
    Le Gratiet, L.
    Sagnes, I.
    Schmidt, S.
    Tuereci, H. E.
    Amo, A.
    Bloch, J.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 116 (06)
  • [3] Nonreciprocal lasing in topological cavities of arbitrary geometries
    Bahari, Babak
    Ndao, Abdoulaye
    Vallini, Felipe
    El Amili, Abdelkrim
    Fainman, Yeshaiahu
    Kante, Boubacar
    [J]. SCIENCE, 2017, 358 (6363) : 636 - 639
  • [4] Topological insulator laser: Experiments
    Bandres, Miguel A.
    Wittek, Steffen
    Harari, Gal
    Parto, Midya
    Ren, Jinhan
    Segev, Mordechai
    Christodoulides, Demetrios N.
    Khajavikhan, Mercedeh
    [J]. SCIENCE, 2018, 359 (6381)
  • [5] Topological Photonic Quasicrystals: Fractal Topological Spectrum and Protected Transport
    Bandres, Miguel A.
    Rechtsman, Mikael C.
    Segev, Mordechai
    [J]. PHYSICAL REVIEW X, 2016, 6 (01):
  • [6] Chiral Bogoliubov excitations in nonlinear bosonic systems
    Bardyn, Charles-Edouard
    Karzig, Torsten
    Refael, Gil
    Liew, Timothy C. H.
    [J]. PHYSICAL REVIEW B, 2016, 93 (02)
  • [7] Topological polaritons and excitons in garden-variety systems
    Bardyn, Charles-Edouard
    Karzig, Torsten
    Refael, Gil
    Liew, Timothy C. H.
    [J]. PHYSICAL REVIEW B, 2015, 91 (16)
  • [8] Robust quantum valley Hall effect for vortices in an interacting bosonic quantum fluid
    Bleu, O.
    Malpuech, G.
    Solnyshkov, D. D.
    [J]. NATURE COMMUNICATIONS, 2018, 9
  • [9] Interacting quantum fluid in a polariton Chern insulator
    Bleu, O.
    Solnyshkov, D. D.
    Malpuech, G.
    [J]. PHYSICAL REVIEW B, 2016, 93 (08)
  • [10] Exciton-Polariton Gap Solitons in Two-Dimensional Lattices
    Cerda-Mendez, E. A.
    Sarkar, D.
    Krizhanovskii, D. N.
    Gavrilov, S. S.
    Biermann, K.
    Skolnick, M. S.
    Santos, P. V.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 111 (14)