Gene augmentation prevents retinal degeneration in a CRISPR/Cas9-based mouse model of PRPF31 retinitis pigmentosa

被引:15
作者
Xi, Zhouhuan [1 ,2 ,3 ]
Vats, Abhishek [1 ]
Sahel, Jose-Alain [1 ,4 ,5 ]
Chen, Yuanyuan [1 ]
Byrne, Leah C. [1 ,4 ,5 ]
机构
[1] Univ Pittsburgh, Dept Ophthalmol, Pittsburgh, PA 15260 USA
[2] Cent South Univ, Eye Ctr, Hunan Key Lab Ophthalmol, Xiangya Hosp, Changsha, Hunan, Peoples R China
[3] Univ Sci & Technol China, Dept Ophthalmol, Eye Ctr, Affiliated Hosp USTC 1,Div Life Sci & Med, Hefei, Anhui, Peoples R China
[4] Univ Pittsburgh, Dept Neurobiol, Pittsburgh, PA 15213 USA
[5] Univ Pittsburgh, Dept Bioengn, Pittsburgh, PA 15213 USA
关键词
AUTOSOMAL-DOMINANT; MESSENGER-RNA; MUTATIONS; EXPRESSION; PRP31; QUANTIFICATION; PENETRANCE; IMPAIRMENT; BLINDNESS;
D O I
10.1038/s41467-022-35361-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mutations in PRPF31 cause autosomal dominant retinitis pigmentosa, an untreatable form of blindness. Gene therapy is a promising treatment for PRPF31-retinitis pigmentosa, however, there are currently no suitable animal models in which to develop AAV-mediated gene augmentation. Here we establish Prpf31 mutant mouse models using AAV-mediated CRISPR/Cas9 knockout, and characterize the resulting retinal degeneration phenotype. Mouse models with early-onset morphological and functional impairments like those in patients were established, providing new platforms in which to investigate pathogenetic mechanisms and develop therapeutic methods. AAV-mediated PRPF31 gene augmentation restored the retinal structure and function in a rapidly degenerating mouse model, demonstrating the first in vivo proof-of-concept for AAV-mediated gene therapy to treat PRPF31-retinitis pigmentosa. AAV-CRISPR/Cas9-PRPF31 knockout constructs also mediated efficient PRPF31 knockout in human and non-human primate retinal explants, laying a foundation for establishing non-human primate models using the method developed here. PRPF31-RP is a blinding disease, caused by insufficient levels of a pre-mRNA splicing factor. Here, the authors show that CRISPR-Cas9 editing of the Prpf31 gene in mice leads to retinal degeneration similar to human patients, and, in the same model, demonstrate benefits from PRPF31 gene therapy.
引用
收藏
页数:17
相关论文
共 60 条
  • [21] Retinitis pigmentosa
    Hartong, Dyonne T.
    Berson, Eliot L.
    Dryja, Thaddeus P.
    [J]. LANCET, 2006, 368 (9549) : 1795 - 1809
  • [22] STRUCTURE OF THE VITREAL FACE OF THE MONKEY OPTIC DISK (MACACCA-MULATTA) - SEM ON FROZEN RESIN-CRACKED OPTIC NERVEHEADS SUPPLEMENTED BY TEM AND IMMUNOHISTOCHEMISTRY
    HEEGAARD, S
    JENSEN, OA
    PRAUSE, JU
    [J]. GRAEFES ARCHIVE FOR CLINICAL AND EXPERIMENTAL OPHTHALMOLOGY, 1988, 226 (04) : 377 - 383
  • [23] Mutations in a protein target of the Pim-1 kinase associated with the RP9 form of autosomal dominant retinitis pigmentosa
    Keen, TJ
    Hims, MM
    McKie, AB
    Moore, AT
    Doran, RM
    Mackey, DA
    Mansfield, DC
    Mueller, RF
    Bhattacharya, SS
    Bird, AC
    Markham, AF
    Inglehearn, CF
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2002, 10 (04) : 245 - 249
  • [24] Time Course of Disease Progression of PRPF31-mediated Retinitis Pigmentosa
    Kiser, Kelly
    Webb-Jones, Kaylie D.
    Bowne, Sara J.
    Sullivan, Lori S.
    Daiger, Stephen P.
    Birch, David G.
    [J]. AMERICAN JOURNAL OF OPHTHALMOLOGY, 2019, 200 : 76 - 84
  • [25] CRISPR-Cas guides the future of genetic engineering
    Knott, Gavin J.
    Doudna, Jennifer A.
    [J]. SCIENCE, 2018, 361 (6405) : 866 - 869
  • [26] CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing
    Labun, Kornel
    Montague, Tessa G.
    Krause, Maximilian
    Cleuren, Yamila N. Torres
    Tjeldnes, Hakon
    Valen, Eivind
    [J]. NUCLEIC ACIDS RESEARCH, 2019, 47 (W1) : W171 - W174
  • [27] Intravenous Injections in Neonatal Mice
    Lampe, Sara E. Gombash
    Kaspar, Brian K.
    Foust, Kevin D.
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2014, (93):
  • [28] Prpf31 is essential for the survival and differentiation of retinal progenitor cells by modulating alternative splicing
    Li, Jingzhen
    Liu, Fei
    Lv, Yuexia
    Sun, Kui
    Zhao, Yuntong
    Reilly, Jamas
    Zhang, Yangjun
    Tu, Jiayi
    Yu, Shanshan
    Liu, Xiliang
    Qin, Yayun
    Huang, Yuwen
    Gao, Pan
    Jia, Danna
    Chen, Xiang
    Han, Yunqiao
    Shu, Xinhua
    Luo, Daji
    Tang, Zhaohui
    Liu, Mugen
    [J]. NUCLEIC ACIDS RESEARCH, 2021, 49 (04) : 2027 - 2043
  • [29] Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa
    Linder, Bastian
    Dill, Holger
    Hirmer, Anja
    Brocher, Jan
    Lee, Gek Ping
    Mathavan, Sinnakaruppan
    Bolz, Hanno Joern
    Winkler, Christoph
    Laggerbauer, Bernhard
    Fischer, Utz
    [J]. HUMAN MOLECULAR GENETICS, 2011, 20 (02) : 368 - 377
  • [30] Binding of the human Prp31 nop domain to a composite RNA-protein platform in U4 snRNP
    Liu, Sunbin
    Li, Ping
    Dybkov, Olexandr
    Nottrott, Stephanie
    Hartmuth, Klaus
    Luehrmann, Reinhard
    Carlomagno, Teresa
    Wahl, Markus C.
    [J]. SCIENCE, 2007, 316 (5821) : 115 - 120