A Review of PointPillars Architecture for Object Detection from Point Clouds

被引:1
作者
Desai, Nagaraj [1 ]
Schumann, Thomas [2 ]
Alsheakhali, Mohamed [3 ]
机构
[1] Univ Appl Sci, Hsch Darmstadt, Darmstadt, Germany
[2] Univ Appl Sci, Hsch Darmstadt, Fac Elect Engn, Darmstadt, Germany
[3] CMORE Automot GmbH, Lindau, Germany
来源
2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN) | 2020年
关键词
VISION;
D O I
10.1109/icce-taiwan49838.2020.9258147
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Object detection from point clouds, e.g. 3D LiDAR data, has many applications especially for autonomous driving systems. There have been several approaches to this complex problem, however, PointPillars architecture has the advantage that it can reuse the existing image-based convolution neural networks for object detection from 3D LiDAR data. The performance of the PointPillars architecture is further enhanced in this work by introduction of an additional Pillar Feature Extraction layer. It is observed that this modified PointPillars model trained to detect cars on KITTI dataset shows an improvement of 6.25% in the average precision for the easy cases in KITTI 3D detection benchmark, when tested on a GTX 1080i GPU.
引用
收藏
页数:2
相关论文
共 12 条
[1]  
[Anonymous], 2010, P 27 INT C MACH LEAR, DOI 10.5555/3104322.3104425
[2]   Vision meets robotics: The KITTI dataset [J].
Geiger, A. ;
Lenz, P. ;
Stiller, C. ;
Urtasun, R. .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2013, 32 (11) :1231-1237
[3]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074
[4]  
Ioffe S, 2015, PR MACH LEARN RES, V37, P448
[5]   PointPillars: Fast Encoders for Object Detection from Point Clouds [J].
Lang, Alex H. ;
Vora, Sourabh ;
Caesar, Holger ;
Zhou, Lubing ;
Yang, Jiong ;
Beijbom, Oscar .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :12689-12697
[6]  
Li B, 2016, ROBOTICS: SCIENCE AND SYSTEMS XII
[7]   Frustum PointNets for 3D Object Detection from RGB-D Data [J].
Qi, Charles R. ;
Liu, Wei ;
Wu, Chenxia ;
Su, Hao ;
Guibas, Leonidas J. .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :918-927
[8]  
Qi Charles Ruizhongtai, 2016, PROC CVPR IEEE
[9]   Render for CNN: Viewpoint Estimation in Images Using CNNs Trained with Rendered 3D Model Views [J].
Su, Hao ;
Qi, Charles R. ;
Li, Yangyan ;
Guibas, Leonidas J. .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2686-2694
[10]   SECOND: Sparsely Embedded Convolutional Detection [J].
Yan, Yan ;
Mao, Yuxing ;
Li, Bo .
SENSORS, 2018, 18 (10)