Patterning and Templating for Nanoelectronics

被引:105
作者
Galatsis, Kosmas [1 ,2 ]
Wang, Kang L. [2 ]
Ozkan, Mihri [3 ]
Ozkan, Cengiz S. [4 ,5 ]
Huang, Yu
Chang, Jane P.
Monbouquette, Harold G.
Chen, Yong
Nealey, Paul [6 ]
Botros, Youssry [7 ]
机构
[1] Univ Calif Los Angeles, FCRP Ctr Funct Engn Nano Architecton, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Elect Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Riverside, Dept Elect Engn, Riverside, CA 92521 USA
[4] Univ Calif Riverside, Dept Mech Engn, Riverside, CA 92521 USA
[5] Univ Calif Riverside, Mat Sci & Engn Program, Riverside, CA 92521 USA
[6] Univ Wisconsin, Madison, WI 53706 USA
[7] Intel Corp, Los Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
QUANTUM DOTS; DNA; DESIGN; NANOARCHITECTURES;
D O I
10.1002/adma.200901689
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The semiconductor industry will soon be launching 32 nm complementary metal oxide semiconductor (CMOS) technology node using 193 nm lithography patterning technology to fabricate microprocessors with more than 2 billion transistors. To ensure the survival of Moore's law, alternative patterning techniques that offer advantages beyond conventional top-down patterning are aggressively being explored. It is evident that most alternative patterning techniques may not offer compelling advantages to succeed conventional top-down lithography for silicon integrated circuits, but alternative approaches may well indeed offer functional advantages in realising next-generation information processing nanoarchitectures such as those based on cellular, bioinsipired, magnetic dot logic, and crossbar schemes. This paper highlights and evaluates some patterning methods from the Center on Functional Engineered Nano Architectonics in Los Angeles and discusses key bench-marking criteria with respect to CMOS scaling.
引用
收藏
页码:769 / 778
页数:10
相关论文
共 34 条
[1]  
[Anonymous], INT TECHN ROADM SEM
[2]   Rates of DNA-mediated electron transfer between metallointercalators [J].
Arkin, MR ;
Stemp, EDA ;
Holmlin, RE ;
Barton, JK ;
Hormann, A ;
Olson, EJC ;
Barbara, PF .
SCIENCE, 1996, 273 (5274) :475-480
[3]   Electron beam lithography - Resolution limits [J].
Broers, AN ;
Hoole, ACF ;
Ryan, JM .
MICROELECTRONIC ENGINEERING, 1996, 32 (1-4) :131-142
[4]   Biomolecular Nanopatterning by Electrophoretic Printing Lithography [J].
Chang, Yu ;
Huang, Suxian ;
Chen, Yong .
SMALL, 2009, 5 (01) :63-66
[5]   DNA-functionalized single-walled carbon nanotubes [J].
Dwyer, C ;
Guthold, M ;
Falvo, M ;
Washburn, S ;
Superfine, R ;
Erie, D .
NANOTECHNOLOGY, 2002, 13 (05) :601-604
[6]  
GU Z, 2009, ANGEW CHEM INT EDIT, V48, P829
[7]   Molecular electronics [J].
Heath, JR ;
Ratner, MA .
PHYSICS TODAY, 2003, 56 (05) :43-49
[8]  
Hsu KH, 2007, NANO LETT, V7, P446, DOI [10.1021/nl062766o, 10.1021/nl062766O]
[9]   Programmable assembly of nanoarchitectures using genetically engineered viruses [J].
Huang, Y ;
Chiang, CY ;
Lee, SK ;
Gao, Y ;
Hu, EL ;
De Yoreo, J ;
Belcher, AM .
NANO LETTERS, 2005, 5 (07) :1429-1434
[10]   Photonic crystals based on periodic arrays of aligned carbon nanotubes [J].
Kempa, K ;
Kimball, B ;
Rybczynski, J ;
Huang, ZP ;
Wu, PF ;
Steeves, D ;
Sennett, M ;
Giersig, M ;
Rao, DVGLN ;
Carnahan, DL ;
Wang, DZ ;
Lao, JY ;
Li, WZ ;
Ren, ZF .
NANO LETTERS, 2003, 3 (01) :13-18