Quantum repeaters based on concatenated bosonic and discrete-variable quantum codes

被引:49
作者
Rozpedek, Filip [1 ]
Noh, Kyungjoo [2 ]
Xu, Qian [1 ]
Guha, Saikat [3 ]
Jiang, Liang [1 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] AWS Ctr Quantum Comp, Pasadena, CA USA
[3] Univ Arizona, James C Wyant Coll Opt Sci, Tucson, AZ USA
基金
美国国家科学基金会;
关键词
ERROR-CORRECTION; STATES; QUBIT; COMMUNICATION; GENERATION; CONVERSION; MICROWAVE;
D O I
10.1038/s41534-021-00438-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose an architecture of quantum-error-correction-based quantum repeaters that combines techniques used in discrete- and continuous-variable quantum information. Specifically, we propose to encode the transmitted qubits in a concatenated code consisting of two levels. On the first level we use a continuous-variable GKP code encoding the qubit in a single bosonic mode. On the second level we use a small discrete-variable code. Such an architecture has two important features. Firstly, errors on each of the two levels are corrected in repeaters of two different types. This enables for achieving performance needed in practical scenarios with a reduced cost with respect to an architecture for which all repeaters are the same. Secondly, the use of continuous-variable GKP code on the lower level generates additional analog information which enhances the error-correcting capabilities of the second-level code such that long-distance communication becomes possible with encodings consisting of only four or seven optical modes.
引用
收藏
页数:12
相关论文
共 56 条
[1]   Performance and structure of single-mode bosonic codes [J].
Albert, Victor V. ;
Noh, Kyungjoo ;
Duivenvoorden, Kasper ;
Young, Dylan J. ;
Brierley, R. T. ;
Reinhold, Philip ;
Vuillot, Christophe ;
Li, Linshu ;
Shen, Chao ;
Girvin, S. M. ;
Terhal, Barbara M. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2018, 97 (03)
[2]  
Andrews RW, 2014, NAT PHYS, V10, P321, DOI [10.1038/nphys2911, 10.1038/NPHYS2911]
[3]   All-photonic quantum repeaters [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2015, 6
[4]   One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces [J].
Borregaard, Johannes ;
Pichler, Hannes ;
Schoder, Tim ;
Lukin, Mikhail D. ;
Lodahl, Peter ;
Sorensen, Anders S. .
PHYSICAL REVIEW X, 2020, 10 (02)
[5]   Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer [J].
Bourassa, J. Eli ;
Alexander, Rafael N. ;
Vasmer, Michael ;
Patil, Ashlesha ;
Tzitrin, Ilan ;
Matsuura, Takaya ;
Su, Daiqin ;
Baragiola, Ben Q. ;
Guha, Saikat ;
Dauphinais, Guillaume ;
Sabapathy, Krishna K. ;
Menicucci, Nicolas C. ;
Dhand, Ish .
QUANTUM, 2021, 5
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[8]   Quantum error correction of a qubit encoded in grid states of an oscillator [J].
Campagne-Ibarcq, P. ;
Eickbusch, A. ;
Touzard, S. ;
Zalys-Geller, E. ;
Frattini, N. E. ;
Sivak, V. V. ;
Reinhold, P. ;
Puri, S. ;
Shankar, S. ;
Schoelkopf, R. J. ;
Frunzio, L. ;
Mirrahimi, M. ;
Devoret, M. H. .
NATURE, 2020, 584 (7821) :368-+
[9]  
de Neeve B., 2020, ERROR CORRECTION LOG
[10]   Ultrafast fault-tolerant long-distance quantum communication with static linear optics [J].
Ewert, Fabian ;
van Loock, Peter .
PHYSICAL REVIEW A, 2017, 95 (01)