Discovery of drug mode of action and drug repositioning from transcriptional responses

被引:596
作者
Iorio, Francesco [2 ,5 ]
Bosotti, Roberta [1 ]
Scacheri, Emanuela [1 ]
Belcastro, Vincenzo [2 ]
Mithbaokar, Pratibha [2 ]
Ferriero, Rosa [2 ]
Murino, Loredana [5 ]
Tagliaferri, Roberto [5 ]
Brunetti-Pierri, Nicola [2 ,4 ]
Isacchi, Antonella [1 ]
di Bernardo, Diego [2 ,3 ]
机构
[1] Nerviano Med Sci, Dept Biotechnol, Milan, Italy
[2] TeleThon Inst Genet & Med, Naples, Italy
[3] Univ Naples Federico II, Dept Comp Sci & Syst, Naples, Italy
[4] Univ Naples Federico II, Dept Pediat, Naples, Italy
[5] Univ Salerno, Dept Math & Comp Sci, I-84100 Salerno, Italy
关键词
computational drug discovery; drug repurposing; systems biology; chemotherapy; CONNECTIVITY MAP; KAPPA-B; TARGET; AUTOPHAGY; CAMPTOTHECIN; INHIBITION; PROTEASOME; APOPTOSIS; BIOLOGY;
D O I
10.1073/pnas.1000138107
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A bottleneck in drug discovery is the identification of the molecular targets of a compound (mode of action, MoA) and of its off-target effects. Previous approaches to elucidate drug MoA include analysis of chemical structures, transcriptional responses following treatment, and text mining. Methods based on transcriptional responses require the least amount of information and can be quickly applied to new compounds. Available methods are inefficient and are not able to support network pharmacology. We developed an automatic and robust approach that exploits similarity in gene expression profiles following drug treatment, across multiple cell lines and dosages, to predict similarities in drug effect and MoA. We constructed a "drug network" of 1,302 nodes (drugs) and 41,047 edges (indicating similarities between pair of drugs). We applied network theory, partitioning drugs into groups of densely interconnected nodes (i.e., communities). These communities are significantly enriched for compounds with similar MoA, or acting on the same pathway, and can be used to identify the compound-targeted biological pathways. New compounds can be integrated into the network to predict their therapeutic and off-target effects. Using this network, we correctly predicted the MoA for nine anticancer compounds, and we were able to discover an unreported effect for a well-known drug. We verified an unexpected similarity between cyclin-dependent kinase 2 inhibitors and Topoisomerase inhibitors. We discovered that Fasudil (a Rho-kinase inhibitor) might be "repositioned" as an enhancer of cellular autophagy, potentially applicable to several neurodegenerative disorders. Our approach was implemented in a tool (Mode of Action by NeTwoRk Analysis, MANTRA, http://mantra.tigem.it).
引用
收藏
页码:14621 / 14626
页数:6
相关论文
共 47 条
[1]   Enhanced sensitivity to irinotecan by Cdk1 inhibition in the p53-deficient HT29 human colon cancer cell line [J].
Abal, M ;
Bras-Goncalves, R ;
Judde, JG ;
Fsihi, H ;
de Cremoux, P ;
Louvard, D ;
Magdelenat, H ;
Robine, S ;
Poupon, MF .
ONCOGENE, 2004, 23 (09) :1737-1744
[2]   Computational biology and drug discovery: From single-target to network drugs [J].
Ambesi-Impiombato, Alberto ;
di Bernardo, Diego .
CURRENT BIOINFORMATICS, 2006, 1 (01) :3-13
[3]   Camptothecin releases P-TEFb from the inactive 7SK snRNP complex [J].
Amente, Stefano ;
Gargano, Barbara ;
Napolitano, Giuliana ;
Lania, Luigi ;
Majello, Barbara .
CELL CYCLE, 2009, 8 (08) :1249-1255
[4]   Network analyses in systems pharmacology [J].
Berger, Seth I. ;
Iyengar, Ravi .
BIOINFORMATICS, 2009, 25 (19) :2466-2472
[5]   Identification of N,1,4,4-Tetramethyl-8-{[4-(4-methylpiperazin-1-yl)phenyl]amino}-4,5-dihydro-1H-pyrazolo[4,3-h]quinazoline-3-carboxamide (PHA-848125), a Potent, Orally Available Cyclin Dependent Kinase Inhibitor [J].
Brasca, Maria Gabriella ;
Amboldi, Nadia ;
Ballinari, Dario ;
Cameron, Alexander ;
Casalc, Elena ;
Cervi, Giovanni ;
Colombo, Maristella ;
Colotta, Francesco ;
Croci, Valter ;
D'Alessio, Roberto ;
Fiorentini, Francesco ;
Isacchi, Antonella ;
Mercurio, Ciro ;
Moretti, Walter ;
Panzeri, Achille ;
Pastori, Wilma ;
Pevarello, Paolo ;
Quartieri, Francesca ;
Roletto, Fulvia ;
Traquandi, Gabriella ;
Vianello, Paola ;
Vulpetti, Anna ;
Ciomei, Marina .
JOURNAL OF MEDICINAL CHEMISTRY, 2009, 52 (16) :5152-5163
[6]   Drug target identification using side-effect similarity [J].
Campillos, Monica ;
Kuhn, Michael ;
Gavin, Anne-Claude ;
Jensen, Lars Juhl ;
Bork, Peer .
SCIENCE, 2008, 321 (5886) :263-266
[7]   Regulation of autophagy by the inositol trisphosphate receptor [J].
Criollo, A. ;
Maiuri, M. C. ;
Tasdemir, E. ;
Vitale, I. ;
Fiebig, A. A. ;
Andrews, D. ;
Molgo, J. ;
Diaz, J. ;
Lavandero, S. ;
Harper, F. ;
Pierron, G. ;
di Stefano, D. ;
Rizzuto, R. ;
Szabadkai, G. ;
Kroemer, G. .
CELL DEATH AND DIFFERENTIATION, 2007, 14 (05) :1029-1039
[8]   The value of proteasome inhibition in cancer [J].
Cvek, Boris ;
Dvorak, Zdenek .
DRUG DISCOVERY TODAY, 2008, 13 (15-16) :716-722
[9]   Tamoxifen and AEBS ligands induced apoptosis and autophagy in breast cancer cells through the stimulation of sterol accumulation [J].
de Medina, Philippe ;
Silvente-Poirot, Sandrine ;
Poirot, Marc .
AUTOPHAGY, 2009, 5 (07) :1066-+
[10]   Chemogenomic profiling on a genomewide scale using reverse-engineered gene networks [J].
di Bernardo, D ;
Thompson, MJ ;
Gardner, TS ;
Chobot, SE ;
Eastwood, EL ;
Wojtovich, AP ;
Elliott, SJ ;
Schaus, SE ;
Collins, JJ .
NATURE BIOTECHNOLOGY, 2005, 23 (03) :377-383