Study on morphology of electrospun poly(vinyl alcohol) mats

被引:625
作者
Zhang, CX
Yuan, XY [1 ]
Wu, LL
Han, Y
Sheng, J
机构
[1] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300072, Peoples R China
[2] Tianjing Univ Technol, Sch Biotechnol & Chem Engn, Tianjin 300191, Peoples R China
关键词
poly(vinyl alcohol); electrospinning; fiber; mat; morphology;
D O I
10.1016/j.eurpolymj.2004.10.027
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Submicron poly(vinyl alcohol) (PVA) fiber mats were prepared by electrospinning of aqueous PVA solutions in 68% concentration. Fiber morphology was observed under a scanning electron microscope and effects of instrument parameters including electric voltage, tip-target distance, flow rate and solution parameters such as concentration on the morphology of electrospun PVA fibers were evaluated. Results showed that, when PVA with higher degree of hydrolysis (DH) of 98% was used, tip-target distance exhibited no significant effect on the fiber morphology, however the morphological structure can be slightly changed by changing the solution flow rate. At high voltages above I 10kV, electrospun PVA fibers exhibited a broad diameter distribution. With increasing solution concentration, the morphology was changed from beaded fiber to uniform fiber and the average fiber diameter could be increased from 87 +/- 14 nm to 246 +/- 50 nm. It was also found that additions of sodium chloride and ethanol had significant effects on the fiber diameter and the morphology of electrospun PVA fibers because of the different solution conductivity, surface tension and viscosity. When the DH value of PVA was increased from 80% to 99%, the morphology electrospun PVA fibers was changed from ribbon-like fibers to uniform fibers and then to beaded fibers. The addition of aspirin and bovine serum albumin also resulted in the appearance of beads. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:423 / 432
页数:10
相关论文
共 30 条
[1]   Processing and microstructural characterization of porous biocompatible protein polymer thin films [J].
Buchko, CJ ;
Chen, LC ;
Shen, Y ;
Martin, DC .
POLYMER, 1999, 40 (26) :7397-7407
[2]   Controlled deposition of electrospun poly(ethylene oxide) fibers [J].
Deitzel, JM ;
Kleinmeyer, JD ;
Hirvonen, JK ;
Tan, NCB .
POLYMER, 2001, 42 (19) :8163-8170
[3]   Electrospinning of polyurethane fibers [J].
Demir, MM ;
Yilgor, I ;
Yilgor, E ;
Erman, B .
POLYMER, 2002, 43 (11) :3303-3309
[4]   Preparation and characterization of a nanoscale poly(vinyl alcohol) fiber aggregate produced by an electrospinning method [J].
Ding, B ;
Kim, HY ;
Lee, SC ;
Shao, CL ;
Lee, DR ;
Park, SJ ;
Kwag, GB ;
Choi, KJ .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2002, 40 (13) :1261-1268
[5]  
DOSHI J, 1995, J ELECTROSTAT, V35, P151, DOI 10.1016/0304-3886(95)00041-8
[6]   Generation of electrospun fibers of nylon 6 and nylon 6-montmorillonite nanocomposite [J].
Fong, H ;
Liu, WD ;
Wang, CS ;
Vaia, RA .
POLYMER, 2002, 43 (03) :775-780
[7]   Beaded nanofibers formed during electrospinning [J].
Fong, H ;
Chun, I ;
Reneker, DH .
POLYMER, 1999, 40 (16) :4585-4592
[8]   Transport properties of porous membranes based on electrospun nanofibers [J].
Gibson, P ;
Schreuder-Gibson, H ;
Rivin, D .
COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2001, 187 :469-481
[9]   Preparation and characterization of H4SiMo12O40/poly(vinyl alcohol) fiber mats produced by an electrospinning method [J].
Gong, J ;
Li, XD ;
Ding, B ;
Lee, DR ;
Kim, HY .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 89 (06) :1573-1578
[10]   Electrospinning Bombyx mori silk with poly(ethylene oxide) [J].
Jin, HJ ;
Fridrikh, SV ;
Rutledge, GC ;
Kaplan, DL .
BIOMACROMOLECULES, 2002, 3 (06) :1233-1239