Cloning and characterization of a functional human γ-aminobutyric acid (GABA) transporter, human GAT-2

被引:43
作者
Christiansen, Bolette
Meinild, Anne-Kristine
Jensen, Anders A.
Braeuner-Osborne, Hans
机构
[1] Univ Copenhagen, Fac Pharmaceut Sci, Dept Med Chem, DK-2100 Copenhagen, Denmark
[2] Univ Copenhagen, Fac Sci, Dept Mol Biol, DK-2100 Copenhagen, Denmark
关键词
D O I
10.1074/jbc.M702111200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Plasma membrane gamma-aminobutyric acid (GABA) transporters act to terminate GABA neurotransmission in the mammalian brain. Intriguingly four distinct GABA transporters have been cloned from rat and mouse, whereas only three functional homologs of these transporters have been cloned from human. The aim of this study therefore was to search for this fourth missing human transporter. Using a bioinformatics approach, we successfully identified and cloned the full-length cDNA of a so far uncharacterized human GABA transporter ( GAT). The predicted protein displays high sequence similarity to rat GAT-2 and mouse GAT3, and in accordance with the nomenclature for rat GABA transporters, we therefore refer to the transporter as human GAT-2. We used electrophysiological and cell-based methods to demonstrate that this protein is a functional transporter of GABA. The transport was saturable and dependent on both Na+ and Cl-. Pharmacologically the transporter is distinct from the other human GABA transporters and similar to rat GAT-2 and mouse GAT3 with high sensitivity toward GABA and beta-alanine. Furthermore the GABA transport inhibitor (S)-SNAP-5114 displayed some inhibitory activity at the transporter. Expression analysis by reverse transcription-PCR showed that GAT-2 mRNA is present in human brain, kidney, lung, and testis. The finding of the human GAT-2 demonstrates for the first time that the four plasma membrane GABA transporters identified in several mammalian species are all conserved in human. Furthermore the availability of human GAT-2 enables the use of all human clones of the GABA transporters in drug development programs and functional characterization of novel inhibitors of GABA transport.
引用
收藏
页码:19331 / 19341
页数:11
相关论文
共 67 条
  • [1] Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy
    Allen, NJ
    Káradóttir, R
    Attwell, D
    [J]. PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2004, 449 (02): : 132 - 142
  • [2] [Anonymous], 1993, Biol. Chem. Hoppe Seyler, DOI DOI 10.1515/BCHM3.1993.374.1-6.143
  • [3] Use of anticonvulsants for treatment of neuropathic pain
    Backonja, MM
    [J]. NEUROLOGY, 2002, 59 (05) : S14 - S17
  • [4] Molecular structure and physiological functions of GABAB receptors
    Bettler, B
    Kaupmann, K
    Mosbacher, J
    Gassmann, M
    [J]. PHYSIOLOGICAL REVIEWS, 2004, 84 (03) : 835 - 867
  • [5] The inhibitory neural circuitry as target of antiepileptic drugs
    Böhme, I
    Lüddens, H
    [J]. CURRENT MEDICINAL CHEMISTRY, 2001, 8 (11) : 1257 - 1274
  • [6] Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity
    Bolvig, T
    Larsson, OM
    Pickering, DS
    Nelson, N
    Falch, E
    Krogsgaard-Larsen, P
    Schousboe, A
    [J]. EUROPEAN JOURNAL OF PHARMACOLOGY, 1999, 375 (1-3) : 367 - 374
  • [7] BORDEN LA, 1995, RECEPTOR CHANNEL, V3, P129
  • [8] BORDEN LA, 1992, J BIOL CHEM, V267, P21098
  • [9] Gaba transporter heterogeneity: Pharmacology and cellular localization
    Borden, LA
    [J]. NEUROCHEMISTRY INTERNATIONAL, 1996, 29 (04) : 335 - 356
  • [10] TIAGABINE, SK-AND-F 89976-A, CI-966, AND NNC-711 ARE SELECTIVE FOR THE CLONED GABA TRANSPORTER GAT-1
    BORDEN, LA
    DHAR, TGM
    SMITH, KE
    WEINSHANK, RL
    BRANCHEK, TA
    GLUCHOWSKI, C
    [J]. EUROPEAN JOURNAL OF PHARMACOLOGY-MOLECULAR PHARMACOLOGY SECTION, 1994, 269 (02): : 219 - 224