Multivariable Finite-Time Control of 5 DOF Upper-Limb Exoskeleton Based on Linear Extended Observer

被引:15
作者
Zhang, Gaowei
Yang, Peng
Wang, Jie [1 ]
Sun, Jianjun
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300130, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Upper-limb exoskeleton; finite-time control; sliding mode control; extended state observer; SLIDING-MODE CONTROL; ROBOTIC SHOULDER REHABILITATION; REENTRY ATTITUDE-CONTROL; FEEDBACK CONTROL SCHEME; ACTUATED EXOSKELETON; HYPERSONIC VEHICLE; DISTURBANCE; DESIGN; SYSTEMS; PHASE;
D O I
10.1109/ACCESS.2018.2863384
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An output feedback finite-time control strategy for five degree of freedoms (DOF) upper-limb exoskeleton is investigated in this paper. First, a multivariable second-order sliding mode control is proposed to improve the response speed and stability of the exoskeleton system with parameter uncertainties and external disturbances. Furthermore, for the sake of high control precision with limited information, a finite-time linear extended state observer is constructed to estimate both the unmeasured states and the lumped perturbations. Finally, by utilizing the 5-DOF upper-limb model, simulation results are presented to demonstrate the effectiveness of the control strategy.
引用
收藏
页码:43213 / 43221
页数:9
相关论文
共 34 条
[1]   A Novel Human-Robot Cooperative Method for Upper Extremity Rehabilitation [J].
Bai, Jing ;
Song, Aiguo ;
Xu, Baoguo ;
Nie, Jieyan ;
Li, Huijun .
INTERNATIONAL JOURNAL OF SOCIAL ROBOTICS, 2017, 9 (02) :265-275
[2]   Robotic exoskeletons: a review of recent progress [J].
Bogue, Robert .
INDUSTRIAL ROBOT-AN INTERNATIONAL JOURNAL, 2015, 42 (01) :5-10
[3]   Extended observer based on adaptive second order sliding mode control for a fixed wing UAV [J].
Castaneda, Herman ;
Salas-Pena, Oscar S. ;
de Leon-Morales, Jesus .
ISA TRANSACTIONS, 2017, 66 :226-232
[4]   Sliding mode control of robotic arms with deadzone [J].
de Jesus Rubio, Jose .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1214-1221
[5]   Adaptive disturbance observer-based finite-time continuous fault-tolerant control for reentry RLV [J].
Dong, Qi ;
Zong, Qun ;
Tian, Bailing ;
Zhang, Chaofan ;
Liu, Wenjing .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2017, 27 (18) :4275-4295
[6]   Active disturbance rejection for walking bipedal robots using the acceleration of the upper limbs [J].
Hill, Joshua ;
Fahimi, Farbod .
ROBOTICA, 2015, 33 (02) :264-281
[7]   Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation [J].
Hsieh, Hsiang-Chien ;
Chen, Dian-Fu ;
Chien, Li ;
Lan, Chao-Chieh .
IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2017, 22 (05) :2034-2045
[8]   Adaptive control of 5 DOF upper-limb exoskeleton robot with improved safety [J].
Kang, Hao-Bo ;
Wang, Jian-Hui .
ISA TRANSACTIONS, 2013, 52 (06) :844-852
[9]   Human-robot cooperation control based on a dynamic model of an upper limb exoskeleton for human power amplification [J].
Lee, Hee-Don ;
Lee, Byeong-Kyu ;
Kim, Wan-Soo ;
Han, Jung-Soo ;
Shin, Kyoo-Sik ;
Han, Chang-Soo .
MECHATRONICS, 2014, 24 (02) :168-176
[10]   Adaptive Impedance Control for an Upper Limb Robotic Exoskeleton Using Biological Signals [J].
Li, Zhijun ;
Huang, Zhicong ;
He, Wei ;
Su, Chun-Yi .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2017, 64 (02) :1664-1674