Classification of permutation polynomials of the form x3g(xq-1) of Fq2 where g(x) = x3 + bx plus c and b, c ∈ Fq*

被引:9
作者
Ozbudak, Ferruh [1 ,2 ]
Temur, Burcu Gulmez [3 ]
机构
[1] Middle East Tech Univ, Dept Math, Ankara, Turkey
[2] Middle East Tech Univ, Inst Appl Math, Ankara, Turkey
[3] Atilim Univ, Dept Math, TR-06830 Ankara, Turkey
关键词
Finite fields; Permutation polynomials; Absolutely irreducible; FINITE-FIELDS; TRINOMIALS; BINOMIALS;
D O I
10.1007/s10623-022-01052-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We classify all permutation polynomials of the form x(3) g(x(q-1)) of F-q2 where g(x) = x(3) + bx + c and b, c is an element of F-q*. Moreover we find new examples of permutation polynomials and we correct some contradictory statements in the recent literature. We assume that gcd(3, q -1) = 1 and we use a well known criterion due to Wan and Lidl, Park and Lee, Akbary and Wang, Wang, and Zieve.
引用
收藏
页码:1537 / 1556
页数:20
相关论文
共 35 条
  • [1] Akbary A., 2007, INT J MATH MATH SCI, V7
  • [2] Aubry Y, 2010, CONTEMP MATH, V518, P23
  • [3] A family of permutation trinomials over Fq2
    Bartoli, Daniele
    Timpanella, Marco
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2021, 70
  • [4] Exceptional scattered polynomials
    Bartoli, Daniele
    Zhou, Yue
    [J]. JOURNAL OF ALGEBRA, 2018, 509 : 507 - 534
  • [5] On a conjecture about a class of permutation trinomials
    Bartoli, Daniele
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 : 30 - 50
  • [6] Bartoli D, 2018, DESIGN CODE CRYPTOGR, V86, P1589, DOI 10.1007/s10623-017-0415-8
  • [7] Permutation polynomials, fractional polynomials, and algebraic curves
    Bartoli, Daniele
    Giulietti, Massimo
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 1 - 16
  • [8] The Magma algebra system .1. The user language
    Bosma, W
    Cannon, J
    Playoust, C
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) : 235 - 265
  • [9] Exceptional planar polynomials
    Caullery, Florian
    Schmidt, Kai-Uwe
    Zhou, Yue
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2016, 78 (03) : 605 - 613
  • [10] On the classification of hyperovals
    Caullery, Florian
    Schmidt, Kai-Uwe
    [J]. ADVANCES IN MATHEMATICS, 2015, 283 : 195 - 203